

Embedded Systems SIA, VAT No LV40003411103

47. Katolu str., Riga, LV 1003, LATVIA

Phone: +371 67648888, fax: +371 67205036, e-mail: sales@openrb.com

LogicMachine5 Lite

Product Manual

Document Issue 1.0

November, 2016

Technical Support:
support@openrb.com

mailto:support@openrb.com

2

Copyright

Copyright © 2016 Embedded Systems SIA. All Rights Reserved.

Notice

Embedded Systems SIA., reserves the right to modify the information contained herein as
necessary. Embedded Systems SIA assumes no responsibility for any errors which may appear
in this document. Information in this document is provided solely to enable system and
software implementers to use KNX/EIB LogicMachine product.

Trademarks

LogicMachine is a trademark of Embedded Systems SIA. All other names and trademarks are
the property of their respective owners and are hereby acknowledged.

Introduction

LogicMachine (LM) is your easiest way to program complex logic in KNX/EIB, Modbus, BACnet,
EnOcean (optional) and other networks. LM will enable you to efficiently customize building
automation processes, easily delivering unlimited flexibility benefit to end users in a cost-
effective way.

LM5 Lite is an embedded platform with integrated Ethernet, USB, KNX/EIB, Serial interfaces. LM
allows to use it as cross-standard gateway, logic engine, visualization platform, IP Router.
Scripting templates provides user-friendly, flexible configuration interface and integration with
cloud/web services, 3rd party devices. Via applying custom scripts LM can simultaneously act as
thermostat, security panel, lighting controller, etc. LogicMachine application store and external
app development possibility allows to extend device functionality and adjust to a specific
market segment

LM5 Lite is optionally available with 3x more powerful CPU than all previous LogicMachine
versions.

Technical support

Any faulty devices should be returned to Embedded Systems.

If there are any further technical questions concerning the product please contact our support,
available Mon-Fri 9:00 – 17:00 GMT +02:00. Please write to support@openrb.com.

Firmware updates are available at www.openrb.com

mailto:support@openrb.com
http://www.openrb.com/

3

Caution
Security advice

The installation and assembly of electrical equipment may only be performed by skilled
electrician. The devices must not be used in any relation with equipment that supports, directly
or indirectly, human health or life or with application that can result danger of people, animals
or real value

Mounting advice

The devices are supplied in operational status. The cables connections included can be clamped
to the housing if required.

Electrical connection

The devices are constructed for the operation of protective low voltage (SELV). Grounding of
device is not needed. When switching the power supply on or off, power surges must be
avoided.

4

Contents

DEVICE SPECIFICATION ... 7

1. TERMINAL CONNECTION SCHEMES ... 9

2. STANDARDS SUPPORTED .. 14

3. QUICK STARTUP GUIDE .. 16

3.1. CONNECTION .. 16
3.2. DEFAULT LOGIN PARAMETERS .. 16
3.3. FACTORY DEFAULT ... 16
3.4. IP SETTINGS .. 16
3.5. DISCOVER LOGICMACHINE IP ADDRESS ... 18
3.6. FIRMWARE UPGRADE .. 20
3.7. LOGICMACHINE FOR KNX/EIB NETWORK CONFIGURATION MANAGEMENT WITH ETS 21
3.8. KNX AND IP ROUTER SETTINGS ... 22
3.9. QUICK GUIDE - MOSAIC APPLICATION FOR EASY VISUALIZATION ... 26
3.10. QUICK GUIDE - CREATE VISUALIZATION FOR IPAD/PC .. 30

4. GRAPHICAL USER INTERFACE LOGIN ... 39

4.1. Customize background / Language.. 40
4.2. Find applications ... 41
4.3. Unlock the screen for sorting order and hiding apps .. 42
4.4. Admin mode: adding/removing/administering apps .. 43

5. APPLICATION DEVELOPMENT ... 46

6. LOGICMACHINE CONFIGURATION ... 57

6.1. SCRIPTING ... 58
6.1.1. Block programming ... 58
6.1.2. Block functions .. 60
6.1.3. Adding a new script ... 62
6.1.4. Event-based scripting .. 64
6.1.5. Resident scripting .. 65
6.1.6. Scheduled scripting.. 65
6.1.7. Script editor ... 66
6.1.8. Object functions ... 67
6.1.9. Returned object functions, group communication functions .. 68
6.1.10. Group communication functions ... 69
6.1.11. Object function examples .. 69
6.1.12. Data type functions, data types ... 70
6.1.13. Data types ... 70
6.1.14. Data storage function ... 71
6.1.15. Alert function .. 72
6.1.16. Log function .. 73
6.1.17. Scheduled scripting date/time format ... 73
6.1.18. Time function .. 73
6.1.19. Data Serialization ... 74
6.1.20. String functions ... 74
6.1.21. Input and output functions .. 78
6.1.22. Script control functions ... 79
6.1.23. JSON library ... 79
6.1.24. Conversion .. 80
6.1.25. Bit operators ... 80
6.1.26. Input and Output Facilities ... 81
6.1.27. Mathematical functions ... 82
6.1.28. Table manipulations ... 84
6.1.29. Operating system facilities .. 85
6.1.30. Extended function library ... 87
6.1.31. User libraries .. 88
6.1.32. Common functions .. 89
6.1.33. Start-up (init) script .. 89
6.1.34. Tools ... 90

5

6.2. OBJECTS .. 92
6.2.1. Object parameters ... 92
6.2.2. RGB group object .. 93
6.2.3. Object visualization parameters .. 96
6.2.4. Change the object state .. 100
6.2.6. Object control bar ... 100
6.2.7. Filter objects .. 102

6.3. OBJECT LOGS .. 103
6.3.1. Export logs... 104

6.4. SCHEDULERS ... 106
6.4.1. Add new scheduler ... 106
6.4.2. Scheduler events .. 107
6.4.3. Scheduler holidays ... 107
6.4.4. Direct link .. 108

6.5. TREND LOGS .. 108
6.5.1. Add new trend log .. 109
6.5.2. Direct link .. 109
6.5.3. Trend logs functions .. 110

6.6. VISUALIZATION STRUCTURE ... 111
6.6.1. Levels / Plans ... 111
6.6.2. Layouts / Widgets... 114

6.7. VISUALIZATION ... 118
6.7.1. Plan editor ... 118
6.7.2. Object .. 119
6.7.3. Link .. 121
6.7.4. Text Label .. 122
6.7.5. Image ... 123
6.7.6. Frame .. 123
6.7.7. Gauge .. 125
6.7.8. Camera .. 125
6.7.9. Graph ... 127

6.8. VIS.GRAPHICS ... 129
6.9. UTILITIES .. 131
6.10. USER ACCESS .. 135
6.11. ALERTS ... 137
6.12. ERROR LOG ... 138
6.13. LOGS ... 138

7. USER MODE VISUALIZATION .. 140

7.1. CUSTOM DESIGN USERMODE VISUALIZATION ... 141

8. TOUCH VISUALIZATION ... 142

9. SYSTEM CONFIGURATION ... 143

9.1. HOSTNAME.. 143
9.2. CHANGING ADMIN PASSWORD .. 144
9.3. PACKAGES... 144
9.4. UPGRADE FIRMWARE .. 144
9.5. REBOOT LOGIC MACHINE ... 145
9.6. SHUTDOWN LOGIC MACHINE .. 145
9.7. INTERFACE CONFIGURATION ... 145
9.8. KNX CONNECTION .. 147
9.9. KNX STATISTICS ... 151
9.10. BACNET SETTINGS .. 151
9.11. BACNET OBJECTS ... 153
9.12. HTTP SERVER ... 154
9.13. FTP SERVER .. 154
9.14. REMOTE SERVICES .. 155
9.15. SYSTEM MONITORING ... 157
9.16. REMOTE DIAGNOSTICS .. 158
9.17. NTP CLIENT .. 158
9.18. SYSTEM STATUS .. 159
9.19. NETWORK UTILITIES ... 160

6

9.20. SYSTEM LOG ... 160
9.21. RUNNING PROCESSES .. 161

10. USER MODE SCHEDULERS ... 162

10.1. EVENTS ... 162
10.2. HOLIDAYS ... 163

11. TREND LOGS ... 164

12. MODBUS RTU/TCP INTERCONNECTION WITH LM ... 167

12.1. MODBUS DEVICE PROFILE ... 167
12.2. READING MODBUS RTU COIL / REGISTER FROM THE INTERFACE.. 169
12.3. RTU SCAN .. 169
12.4. RTU SETTINGS .. 170
12.5. ADDING MODBUS DEVICE ... 171
12.6. PROGRAM ADDRESS FOR UIO20 MODBUS DEVICE .. 172
12.7. MODBUS SLAVE EXAMPLES .. 172

13. BACNET IP INTERCONNECTION WITH LM ... 179

13.1. BACNET SERVER MODE: TRANSPARENT DATA TRANSFER TO BACNET NETWORK 179
13.2. BACNET CLIENT MODE ... 180

14. DALI CONFIGURATION .. 183

14.1. DALI OBJECT MAPPING ... 184
14.2. ACCESS DALI BUS FROM SCRIPTS ... 184

15. DMX INTERCONNECTION WITH LM ... 192

16. 3G MODEM CONNECTION WITH LM ... 198

16.1. EXAMPLES .. 200
16.2. SEND SMS MESSAGES TO SPECIFIC SIM NUMBERS AFTER GROUP-READ OR GROUP-WRITE IS TRIGGERED

 201
16.3. SEND SMS MESSAGES WITHOUT 3G MODEM ... 201

17. COMMUNICATION WITH RS232/RS485 SERIAL PORTS .. 203

18. BLUETOOTH 4.0 INTEGRATION .. 206

21. SIP SERVER ON LOGICMACHINE ... 209

22. OBJECT VALUE EXPORT VIA XML .. 211

23. ALERTS, ERRORS VALUES .. 213

24. READ ALERTS RSS FEEDS FROM LOGICMACHINE .. 214

25. OTHER EXAMPLES .. 215

7

Device specification

Types of product

LogiMachine5 Lite LM5L
LogiMachine5 Lite Power LM5Lp

Standards and norms compliance

EMC: EN61000-6-1
 EN61000-6-3
PCT Certificate

Technical data:

Power supply: 24V DC on terminal connectors or

24V DC Passive Power-over-Ethernet

Power consummation: 1.3W

Interface: KNX/EIB TP1 1
 10BaseT/100BaseTX 1
 RS-485 1
 RS-485/RS-232 1
 (switchable in software –

full-duplex=RS232,
half-duplex=RS485)

 USB2.0 (from year 2017) 1

Connections: KNX bus: Bus Connection Terminal

0.8mm2
Power supply: Screw, 1.5mm2

 Serial: Screw, 1.5mm2

Operating elements LED 1 – CPU load
 1 - Activity

Enclosure: Material: Polyamide
 Color: Gray
 Dimensions: 52(W)x90(H)x51(L) mm

Usage temperature: 0C ... +45C
Storage temperature: -15C ... +55C
Weight: 150g
Warranty: 2 years
Relative Humidity: 10...95 % without condensation

8

 LogicMachine5 Lite contains:

 Embedded board with preinstalled software
 Plastic DIN-rail case

9

1. Terminal connection schemes

KNX connection

10

RS-485 connection

There can be used max two RS-485 on LM5 Lite. First one is definitive, second one is software
switchable – either it works as RS-485 or as RS-232 :

- If it is set up as full-duplex it will operate as RS-232 and respective TX/RX/GND screw
terminals should be used

- If it is set up as half-duplex (*) it will operate as RS-485 and respective A/B/GND screw
terminals should be used

*RS-485 is chosen in this case, RS-232 is not activated

11

RS-232 connection

If second serial port is set as full-duplex in LogicMachine configuration, it will operate as RS-232
and respective TX/RX/GND screw terminals should be used.

*RS-232 is chosen in this case, RS-485 is not activated

12

Powering

LM5 supports two powering modes:

- regular powering over screw terminals (Jumpers up or down)

- passive PoE powering over 24V DC (Jumpers down)

Please note that there are two PoE types of PoE switches/adapters – passive and active
(802.3af). In passive mode 4 Ethernet cable wires are used for data and 4 are used for power. In
active PoE mode data and power goes together.

13

Passive PoE switch Passive PoE adapters

14

2. Standards supported

15

LogicMachine is compatible with the following standards:

 KNX/EIB TP, KNXnet/IP

 Modbus TCP, Modbus RTU Client/Server

 BACnet IP, Client/Server

 GSM (through USB modem) for sending SMS notifications and controlling the installation by
receiving SMS commands.

 Bluetooth 3.0 and 4.0 (through USB modem)

 DMX512 (in the box, through RS485)

 DALI (through RS485 gateway)

 AllJoyn

 Ekey biometrical access systems (RS485)

 HVAC systems can be controller through RS485/Ethernet interface by using scripting

 SMTP/Email, SSL

 SIP

 XML (export object values, alerts or errors; integration with Fidelio)

 RSS (read Error or Alert tab content)

 JSON, XMPP

 MQTT

 REDIS

 etc.

The system is made so that each of the standards can be used with each other, so LogicMachine
can act as BACnet to DALI gateway or Modbus to GSM etc.

16

3. Quick startup guide

3.1. Connection

 Mount the device on DIN rail

 Connect the KNX bus cable

 Connect 24V power supply to the device (red pole to 24V+, grey pole to GND)

 Connect Ethernet cable coming from the PC

3.2. Default login parameters

Login name admin

Password admin

IP address 192.168.0.10

Network mask 255.255.255.0

The device can be accessed by opening web browser (Chrome, Firefox, Safari are supported)
and entering IP of the device HTTP://IP

Secure access to the device is available via HTTPS://IP:Port

3.3. Factory default

You can either reboot the device by pressing RESET button or reset the configuration to factory
defaults:

 Press and hold for <10 sec – reboot the device

 Press and hold for >10 sec – reset networking with IP to factory default

 Press and hold for >10 sec and again press and hold for >10 sec – full reset of
configuration to factory defaults

For more info please see here: http://openrb.com/discover-ip-of-logic-machine-or-streaming-
player/

3.4. IP settings

In System configuration Network Interfaces window click on the specific interface to
change the IP settings.

http://ip/
HTTPS://IP:Port
http://openrb.com/discover-ip-of-logic-machine-or-streaming-player/
http://openrb.com/discover-ip-of-logic-machine-or-streaming-player/

17

 Protocol– specific protocol used for addressing
o Static IP – static IP address. By default 192.168.0.10
o DHCP – use DHCP protocol to get IP configuration.

 Current IP– the IP address got from DHCP server. This field appears only if
the IP address is given otherwise it’s hidden.

 Network mask – network mask. By default 255.255.255.0 (/24)
 Gateway IP – gateway IP address
 DNS server – DNS server IP address
 MTU– maximum transmission unit, the largest size of the packet which could be passed

in the communication protocol. By default 1500

When changes are done, the following icon appears in the top-right corner. This should be
applied changes to take effect.

18

3.5. Discover LogicMachine IP address

LM has built-in zeroconf utility by default, so using the following applications you can find out
the IP:

 Windows PC – ServiceBrowser

 Linux PC – Avahi

 Android – ZeroConf Browser

 iOS – Discovery

Windows PC

Easiest way is by using the utility ServiceBrowser which can be downloaded here:
http://marknelson.us/2011/10/25/dns-service-discovery-on-windows/

Linux PC
The utility called Avahi, can be downloaded here:
www.avahi.org

http://marknelson.us/2011/10/25/dns-service-discovery-on-windows/
http://avahi.org/
http://www.avahi.org/

19

Android
The freely available app called ZeroConf Browser, can be downloaded in Play
Store:
https://play.google.com/store/apps/details?id=com.grokkt.android.bonjour&hl=en

iOS/Mac OS
The freely available app called Discovery, can be downloaded in App Store:
https://itunes.apple.com/en/app/discovery-bonjour-
browser/id305441017?mt=8

For iPad install the iPhone/iPod version of the utility.

https://play.google.com/store/apps/details?id=com.grokkt.android.bonjour&hl=en
https://play.google.com/store/apps/details?id=com.grokkt.android.bonjour&hl=en
https://play.google.com/store/apps/details?id=com.grokkt.android.bonjour&hl=en
https://itunes.apple.com/en/app/discovery-bonjour-browser/id305441017?mt=8
https://itunes.apple.com/en/app/discovery-bonjour-browser/id305441017?mt=8
https://itunes.apple.com/en/app/discovery-bonjour-browser/id305441017?mt=8

20

3.6. Firmware upgrade

Note! Before each upgrade please backup your visualization, scripts and object in Logic
Machine Tools Backup.

Note! After each upgrade, we strongly recommend to clean your browser cache.

Use web browser to perform upgrade of the software of Logic Machine. Firmwares are
available in a form of images and could be downloaded from support page ofwww.openrb.com.

Complete system upgrade can be done in System Configuration System Upgrade firmware

LogicMachine visualization upgrade or patch installation can be done in Utilities tab and press
on Install updates icon. After *.LMU file is chosen from the corresponding location press Save
button. The device will be rebooted after 5 seconds and new firmware will be installed.

http://www.openrb.com/

21

3.7. LogicMachine for KNX/EIB network configuration management with
ETS

To use LogicMachine with KNXnet/IP functionality and program other KNX bus devices, the
device should be added into ETS Connection Manager.

 Go to Extras OptionsCommunicationConfigure interfaces

 Put some freely chosen Name for the connection

22

 Chose Type = KNXnet/IP

 Press Rescan button and then choose from the drop down menu found
LogicMachine

 Press OK

 Back in Options Communication window select newly created interface as
Communication Interface from the drop-down menu.

 To test the communication with ETS, press Test button.

 Make sure that bus status is Online – press button in ETS.

3.8. KNX and IP Router settings

KNX specific configuration is located in System configuration Network KNX connection

window.

23

General tab

 Mode [TP-UART / EIBnet IP Tunneling / EIBnet IP Tunneling(NAT mode) / EIBnet IP
Routing] – KNX connection mode. LogicMachine5 has TPUART interface by default built-
in. Note! If there is no KNX TP connected to the device, it will automatically offer to
switch to KNXnet/IP mode.

 ACK all group telegrams – acknowledge receipt of telegram to all group communication
 Parameter–KNX corresponding interface in OS of the system
 KNX address – KNX physical address of the device
 KNX IP features – Use this device with KNX IP features e.g. for KNXnet/IP network

configuration
 Multicast IP – multicast IP address
 Multicast TTL – Time to live for multicast telegram in seconds
 Maximum telegrams in queue – count of maximum telegrams in the queue

IP > TP filter

Filtering table for telegrams going from IP network to KNX TP1 is located in this submenu.

24

 Apply filter to tunneling – either to apply filter policy to telegrams in tunneling
mode. If ETS is used it is recommended to turn this feature off.

 SRC policy [No filter / Accept selected individual addresses / Drop selected individual
addresses]– policy to apply to the list of source addresses

 Ind. address list – list of individual addresses. One address/range per line. Use * (e.g.
1.1.*) to filter all addresses in the given line.

 DST group policy[No filter / Accept selected group addresses / Drop selected group
addresses]– policy to apply to the list of destination group addresses

 Group address list – list of group addresses. One address/range per line. Use * (e.g.
1/1/*) to filter all addresses in the given line.

Note! KNX IP features should be on for filter to work. Filtering lists are updated at
once, changing policies requires restart.

Note that group address list can be filled automatically by checking necessary group

addresses in LogicMachine Objects list

25

TP > IP filter

Filtering table for telegrams going from KNX TP1 to IP network is located in this submenu.

 Apply filter to virtual objects – either to apply filter policy to objects added in
Objects tab as virtual objects without attraction to bus

 SRC policy [No filter / Accept selected individual addresses / Drop selected individual
addresses]– policy to apply to the list of source individual addresses

 Ind. address list – list of individual addresses. One address/range per line. Use * (e.g.
1.1.*) to filter all addresses in the given line.

26

 DST group policy [No filter / Accept selected group addresses / Drop selected group
addresses]– policy to apply to the list of destination group addresses

 Group address list – list of group addresses. One address/range per line. Use * (e.g.
1/1/*) to filter all addresses in the given line.

Note! KNX IP features should be on for filter to work. Filtering lists are updated at
once, changing policies requires restart.

3.9. Quick guide - MOSAIC application for easy visualization

Mosaic app is the fastest way to create a nice visualization for your installation.

Getting started.

1. Open the controller's web interface by typing it's IP address in your web browser.
2. Click on Mosaic Editor Mode icon. You will see the constructor interface with clear

template.
3. Once you've entered the Editor Mode you are ready to construct a

visualization.
4. When you have made visualization, enter Client mode

Client mode Home screen

This is a first screen that you will see after opening Mosaic application. First page consists of
Notification, Room and Control Type areas. You can browse the objects either by rooms or by
functions.

27

For example, entering one of room, you see the following view

There are also Control Type shortcuts on the left side by clicking on Settings button

In Settings you can also change skin of the
visualization

28

Advanced visualization with more widgets is planned to be available for fixed monthly
developers fee.

Building structure / Editor Mode

On the bottom panel you can set up your building structure by adding new rooms onto it. This
panel is also designed to navigation by rooms for end-users. Just click on Add new room, then
type a title for it and press "enter". This will take you to the screen of the new room. Now you
can start to fill it with widgets. If you want to rename or delete a room just right-click on it's
title and select the option you want.

Widgets

To add new widget on the home or room screen just click to Add new widget at the top right
corner to open the widgets panel. Once you opened the widget panel choose a widget you
want to add and click on it - it will appear on the screen. A popup window with widget's
properties opens automatically at the same moment.

29

Now you can set a title for this widget and link KNX objects to widget's controls. After you've
set up a widget click on the "Add this widget" button. Well done, the widget on the screen.
Right-click on it to see/edit it's properties or delete the widget.

30

Notifications

There is a special Messages field in Client mode where you can send specific notifications or
alerts. Use storage name mosaic-message to write notifications.

3.10. Quick guide - create visualization for iPad/PC

You can download ready LM backup files here:

http://forum.logicmachine.net/showthread.php?tid=196

Import objects

Fastest way is to import *.ESF file from ETS in Logic Machine Utilities Import ESF file.

Or connect LM to the bus and it will detect objects automatically (in yellow) in Objects tab once

they are activated. Objects can be added manually as well.

http://forum.logicmachine.net/showthread.php?tid=196

31

Prepare graphics

Either in Adobe Illustrator or any ready images can be used. In this example we use

professionally created designs in Illustrator in SVG form (so we can do scaling depending of the

screen size and not losing the quality)

32

a) basic background which can be changed by necessity

b) foreground which will stay unchanged

33

Add both files in Logic Machine Vis. Graphics Images/Backgrounds

Prepare set of icons (preferably in SVG form) and add them in Logic Machine Vis. Graphics
Icons. Or you can use icons predefined in LogicMachine by default.

Create “floor” structure and add objects to the map

34

In Logic Machine Vis.structure menu the structure of the visualization is defined and

visualization backgrounds are uploaded. Use icon to add floor.

In this example we will create a new floor named “1_page_H” and “Bathroom_H”. First Floor

will be a dashboard with link to other rooms and functions. Choose screen resolution for which

you are creating this visualization, choose first and second background images from the ones

added before.

35

Add objects to newly created visualization map

After the building and floor structure is defined, it is visualized in Visualization tab. Controlled

and monitored objects can be added and managed in this section. Both side bars can be

minimized by pressing on left/right arrow icon making the map more visible especially on small

displays.

36

Objects can be added to the map by clicking on Unlock current floor plan for editing button. In

this example we are creating first page of visualization which will link to other Floors with

specific object control. Add link by clicking on Link tab, choosing specific icon, scale it and place

in desired location.

This example’s secondary background already contains icons on it, so what is needed, is to add

transparent image in Vis.graphics and add this image on top of every icon.

When all links are defined, press Save and reload floor plan button.

In same way fill the Bedroom plan with object parameters in Object tab.

37

Launching visualization on touch device (iPad in this case)

 Make sure your iPad is connected wirelessly to the Logic Machine

 In the browser enter Logic Machine’s IP (default 192.168.0.10).

 Click on the User mode visualization

 Save the application as permanent/shortcut in your iPad

Touch visualization is also automatically created with list of Floor objects.

38

39

4. Graphical User Interface Login

KNX/EIB LogicMachine has IP address 192.168.0.10 set by default to LAN interface. Use this

address as www address in the browser's address field.

Note! Make sure that the PC connecting to the LogicMachine has IP set from the same subnet.

After successful login a default page appears.

 Logic Machine – visualization creator, scripts, object relations, alerts, KNX objects and
KNX objects, designing building view and visualization maps

 System config – IP and KNX specific configuration

 Visualization – defined visualization maps with objects

 Touch – Visualization system for iPhone/iPod/iPad/Android touch screen devices

 Schedulers – User defined schedulers

 Trend logs – Trends for data logs

 Mosaic app – Mosaic easy visualization creation and presentation apps

40

First screen of the interface is a constructor of applications – you can change applications which
you see on specific device, change background color, install or remove apps, sort order etc.
Note that the mentioned settings are individual for each device you are connecting from.

4.1. Customize background / Language

By clicking on Customize icon , you access the window where you can choose background
image of your first screen for this particular device

You can choose the interface language by clicking on Language drop-down menu.

41

After you choose the style, the interface is automatically set to chosen background

4.2. Find applications

By clicking on the zoom icon on the left top corner, you can quickly find applications
containing search phrase.

42

4.3. Unlock the screen for sorting order and hiding apps

Sorting the order of applications is available when the screen is unlocked. Press Unlock icon for

this purpose

If you press Visibility icon you will be able to hide/unhide apps from main screen. This
setting can be disabled by admin.

For example if you disable specific apps and finish sorting, click Lock icon to see the new
screen.

43

4.4. Admin mode: adding/removing/administering apps

Enter admin mode by clicking on Admin icon and entering the password.

Password

admin

Change admin password

Once in admin mode, click on Settings icon and press Change admin password button.

Another setting here is Allow users to show/hide apps which will enable/disable the possibility
to show or hide apps for end-users as shown in 4.3.

Change default page view for users

While in admin mode, do the necessary page adjustments – you can change background

texture, hide/unhide/sort apps by using same icons as in user mode (see 4.3)

Once all necessary changes are done, click on Save icon to save the default page.

Add / remove apps

Click on plus icon to enter the administration window of apps. If you see the following
window, make sure you have set correct IP/gateway/DNS settings for your LogicMachine
(System config Network Interfaces)

44

On the default App management page you see available applications.

You can add the App to your first screen by clicking on Install button and approve the
choice

The installed Apps will appear then in Installed section where you can uninstall them by
necessity.

45

You can install the app also from the file, by clicking on Install from file entry

To update app click on respective Update icon or from main administration screen – on the
following icon:

By pressing on this icon you will be redirected to initial front page.

Exit admin mode

Click icon to exit admin mode.

46

5. Application development

Available libraries/frameworks

• jQuery v2 (http://jquery.com/)

• Bootstrap v3 (http://getbootstrap.com)

• Font Awesome v4 (http://fontawesome.io)

Bootstrap comes without Glyphicons, use Font Awesome instead.

Base directory structure

• /data – apps and widgets are stored here, accessible at http://IP/apps/data/

• /libs – Lua library storage, loaded via require('custom.lib') where lib is library name.

• /user – allows storing user files and LP scripts, accessible at http://IP/user/

App / Widget structure

Application name (ID) must be unique and can only contain alphanumeric characters, hyphens

and underscores. Maximum name length is 64 characters.

Directory structure

• index.lp or index.html – required for apps, unless url is specified, clicking app icon will

open app directory in the same window. Applications must provide a Back button so

user can return to starting page

• icon.svg or icon.png – required for apps, contains application icon, SVG is

recommended

• widget.lp or widget.js – required for widgets, can contain JavaScript + Lua code or

pure JavaScript source which displays widget contents

• title – optional for apps, text file with title that is shown beneath the icon

• url – optional for apps, text file with URL that should be open when icon is clicked

• style.css – optional for widget, contains custom CSS stylesheet for given widget

• config.lp or config.html – optional configuration file, see description below

In widget mode icon element ID is the same as widget name, all other HTML element IDs must

be prefixed with unique application name to minimize collisions between different applications.

The same rule applies to CSS selectors.

Default widget size is 100×100px. Width/height can be increased by calling setWidgetSize(cols,

http://jquery.com/
http://getbootstrap.com/
http://fontawesome.io/
http://ip/apps/data/
http://ip/user/

47

rows) on widget element. Width formula: cols * 110 – 10, height formula: rows * 110 – 10

Example

Clock widget which takes double width/height and places SVG image which fills all available

space inside of widget container:

(function() {
 // get widget element and set double width/height
 var el = $('#clock').setWidgetSize(2, 2);
 $('<object type="image/svg+xml"></object>') // object allows SVG+JavaScript
 .css('width', '100%') // full width
 .css('height', '100%') // full height
 .attr('data', '/apps/data/clock/clock.svg') // SVG image source
 .appendTo(el); // add to container
})();

Configuration

• Application directory must contain either config.lp or config.html file

• This file must contain form element, id must be set in myapp-config format, where

myapp is unique application name

• Data exchange is done via events triggered on form element:

◦ config-load – (to app) provides an object with all configuration key/value pairs

◦ config-check – (to app) triggered when Save button is clicked, app configuration

must either show an error message if configuration is invalid or trigger config-save

◦ config-save – (from app) saves configuration on server side and closed modal

window, application must pass configuration parameters as an object

• Configuration can be accessed from Lua using these functions:

◦ config.get(app, key, default) – returns single value for given application name,

default value or nil if key is not found

◦ config.getall(app) – return table with all configuration values for given application

name or nil if configuration is empty

◦ config.set(app, key, value) – adds a new key/value pair or overwrites an existing one

◦ config.setall(app, cfg) – overwrites existing config with given cfg table with

keys/values

◦ config.delete(app, key) – deletes existing key/value pair

• Unpublished apps that have configuration file present will appear under Dev apps in

admin page

48

Example (config.html)

Create a simple for element with single numeric input which accepts values in 0..100 range

<form id="myapp-config">
 <div class="form-group">
 <label for="myapp-input">Numberic input</label>
 <input type="number" name="input" id="myapp-input" class="form-control" min="0"
max="100">
 </div>
</form>

<script>
(function() {
 var el = $('#myapp-config') // form element
 , input = $('#myapp-input'); // input element

 // set element values when config is loaded
 el.on('config-load', function(event, data) {
 $.each(data, function(key, value) {
 $('#myapp-' + key).val(value);
 });
 });

 // runs when Save button is clicked
 el.on('config-check', function() {
 var val = parseInt(input.val(), 10) // input value
 , min = parseInt(input.attr('min'), 10) // minimum value
 , max = parseInt(input.attr('max'), 10); // maximum value

 // invalid value
 if (isNaN(val) || val < min || max < val) {
 alert('Please enter a value between ' + min + ' and ' + max);
 }
 // all good, save configuration
 else {
 el.triggerHandler('config-save', { input: val });
 }
 });
})();
</script>

49

localStorage wrapper functions

localStorage allows saving client-side configuration. Several functions are provided to safely execute

localStorage functions, as they might fail is some cases like private mode on iOS. It also allows storing

any values that can be serialized using JSON.stringify.

• storeSet(key, value) – sets key/value pair

• storeGet(key) – retrieves key value, returns null when key is not found

• storeRemove(key) – removes key from storage

Storage keys must be prefixed with unique application name to minimize collisions between different

applications

Examples

Get currently selected theme (light/dark)

var theme = storeGet('theme') || 'light';

Store JavaScript objects

var user = { name: 'John', surname: 'Doe', age: 42 };
storeSet('myapp_user', user);

50

Translation

• $.i18n.lang – current language or undefined if default language is used

• $.i18n.add(ns, dictionary) – adds translations to current dictionary, ns must be a unique

application name

• $.i18n.translate(key, default, vars) or $.tr(key, default, vars) – translates a given key or

uses default value if translation is not found for current language. Additional vars object

can be passed to replace variables inside of translation text

Example 1

// register translation for application “myapp”
$.i18n.add('myapp', {
 // translation for mylang
 mylang: {
 hello: 'Hello %{username}, current temperature is %{temperature}',
 goodbye: 'Goodbye %{username}'
 }
});

var text = $.tr('myapp.hello', 'No translation', { username: 'John', temperature: 21 });

// alerts “Hello John, current temperature is 21” if current language is “mylang”
// otherwise alerts “No translation”
alert(text);

Example 2

You can apply translation to jQuery selectors by using tr function: all HTML elements that have

tr class and data-tr-key attribute will have contents replaced with translated version

HTML:

<div id="myapp-container">
 Hello!
</div>

JavaScript:

// register french translation
$.i18n.add('myapp', {
 fr: {
 hello: 'Bonjour!'
 }
});

// apply translation to all elements inside of myapp-container
$('#myapp-container').tr();

51

LP scripts

Allows mixing HTML and Lua inside a single file, Lua chunks must be enclosed in <? ?> tags,

closing tag at the end of the document is not required.

Example

Print current date

<!DOCTYPE html>

<html>

<body>Current date is <? write(os.date()) ?></body>

</html>

Available functions:

• header(hdr) – adds a custom header to the output

• getvar(name) – returns named GET/POST variable or nil when variable is not set

• getvars() - returns all GET/POST variables as Lua table

• getcookie(name) – returns named cookie contents or nil when cookie is not set

• print(...) – outputs any number of variables, ending output with CRLF

• write(...) – similar to print but does not output CRLF at the end

• escape(val) – escape single/double quotes, less than/greater than characters to HTML

entities

Library package is loaded via require('apps') and provides access to these functions:

• all built-in LM functions: alert, log, grp, storage etc

• config library

• vprint(...) and vprinthex(...) functions to view variable contents in human-readable form

• json library

Example

Output multiplication table. Size can be a GET/POST variable in 1..20 range (defaults to 10).

<!DOCTYPE html>
<html>
<body>
<?
size = getvar('size') -- GET/POST variable
size = tonumber(size) or 0 -- convert to number
if size < 1 or 20 < size then
 size = 10 -- set to default value if empty or invalid
end
?>
<table border="1" cellpadding="3">
<? for i = 1, size do ?>
 <tr>

52

 <? for j = 1, size do ?>
 <td><? write(i * j) ?></td>
 <? end ?>
 </tr>
<? end ?>
</table>
</body>
</html>

Full Lua function reference manual is available at:
http://openrb.com/docs/lua.htm

Object functions

Most functions use alias parameter — either object group address or object name. (e.g. '1/1/1'

or 'My object')

Finding single/multiple objects

grp.find(alias)

Returns single object for given alias. Object value will be decoded if data type is set.

Returns nil when object cannot be found, otherwise it returns table with the following

items:

• address — object group address

• updatetime — latest update time in UNIX timestamp format. Use os.date() to

convert to readable date formats

• name — unique object name

• datatype — object data type

• decoded — set to true when decoded value is available

• value — decoded object value

grp.tag(tags [, mode])

Returns a table containing objects with given tag. Tags parameter can be either table or

a string. Mode parameter can be either 'or' (default — returns objects that have any of

given tags) or 'and' (return objects that have all of given tags). You can use object

functions on the returned table.

grp.dpt(dpt, [strict])

Find all objects with matching data type. Dpt can be either a string (“bool”, “scale”,

“uint32” etc) or a field from dt table (dt.bool, dt.scale, dt.uint32). For example, if dpt is

set to dt.uint8, in normal mode all sub-datatypes like dt.scale and dt.angle will be

http://openrb.com/docs/lua.htm

53

included. If exact data type match is required, set strict to true.

grp.all()

Returns a table with all known objects.

Helpers

grp.alias(alias)

Converts group address to object name or name to address. Returns nil when object

cannot be found.

grp.getvalue(alias)

Returns value for given alias or nil when object cannot be found.

Bus requests

grp.write(alias, value [, datatype])

Sends group write request to given alias. Data type is taken from the database if not

specified as third parameter. Returns boolean as the result.

grp.response(alias, value [, datatype])

Similar to grp.write. Sends group response request to given alias.

grp.read(alias)

Sends group read request to given alias. Note: this function returns immediately and

cannot be used to return the result of read request. Use event-based script instead.

grp.update (alias, value [, datatype])

Similar to grp.write, but does not send new value to the bus. Useful for objects that are

used only in visualization.

Tag manipulation

grp.gettags(alias)

Returns a table with all tags that are set for given alias.

grp.addtags(alias, tags)

Adds single or multiple tags to given alias. Tags parameter can be either a string (single

tags) or Lua table consisting of strings (multiple tags).

grp.removetags(alias, tags)

Removes single or multiple tags from given alias. Tags parameter can be either a string

(single tags) or Lua table consisting of strings (multiple tags).

grp.removealltags(alias)

54

Removes all tags for given alias.

grp.settags(alias, tags)

Overwrites all tags for given alias. Tags parameter can be either a string (single tags) or

Lua table consisting of strings (multiple tags)

Object creation and modification

grp.setcomment(alias, comment)

Sets comment field for given alias

grp.create(config)

Creates a new or overwrites an existing object based on provided config, which must be

a Lua table. Returns object ID on success, nil plus error message otherwise.

Config fields:

• datatype – required, object data type. Can be either a string (“bool”, “scale”,

“uint32” etc) or a field from dt table (dt.bool, dt.scale, dt.uint32)

• name – optional, unique object name. If an object with the same name already

exists, numeric prefix will be added

• comment – optional, object comment (string)

• units – optional, object units/suffix (string)

• address – optional, object group address (string). If not set the first free address

from configured range will be used

• tags – optional, object tags, can be either a string (single tags) or Lua table

consisting of strings (multiple tags)

If an object with the same group address already exists, only units, datatype and

comment fields will be changed. All other properties will be kept unchanged.

Examples

Create new object with known address

address = grp.create({
 datatype = dt.float16,
 address = '1/1/1',
 name = 'My first object',
 comment = 'This is my new object',
 units = 'W',
 tags = { 'My tag A', 'My tag B' },
})

Create new object with automatic address assignment

55

address = grp.create({
 datatype = dt.bool,
 name = 'My second object',
})

Database functions

SQLite v3 is used as the database engine.

Note: Database tables must be prefixed with unique application name to minimize collisions

between different applications.

Core functions

• db:execute(query) – executes given query, return value can be either a database cursor

or query result

• db:escape(value) – escapes given string value so it can be safely used in a query

• db:query(query, …) – executes given query, question marks in the query are replaced by

additional parameters (see examples below)

INSERT/UPDATE/DELETE helpers

Note: Lua tables passed as values and where parameters must not have fields that are not

present in given database table. Otherwise query will fail

• db:insert(tablename, values) – performs INSERT query based on given values

• db:update(tablename, values, where) – performs UPDATE query based on given values

and where parameters

• db:delete(tablename, where) – performs DELETE query based on where parameter

SELECT helpers

Note: parameters must be passed in the same way as for db:query() function

• db:getone(query, …) – returns first field value from the first matching row from given

query

• db:getrow(query, …) – returns first matching row from given query

• db:getlist(query, …) – returns complete query result as Lua table, where each table item

is first field from each row

• db:getall(query, …) – returns complete query result as Lua table, where each table item

is Lua table with field→value mapping

56

Examples

-- Query parameter replacement

db:query('UPDATE table SET field=? WHERE id=?', 'test', 42)

-- Same as INSERT INTO table (id, value) VALUES (42, 'test')

db:insert('table', {

 id = 42,

 value = 'test',

})

-- Same as UPDATE table SET value='test' WHERE id=42

db:update('table', { value = 'test' }, { id = 42 })

-- Same as DELETE FROM table WHERE id=42

db:delete('table', { id = 42 })

57

6. LogicMachine configuration

Login Password

admin admin

This is a home directory for LogicMachine configuration management. The main menu consists
of the following menus:

 Scripting – scripting repository management

 Objects– KNX bus object management

 Object logs– KNX bus object historical logs

 Schedulers– administrator interface for user mode schedulers

 Trend logs – administrator interface for trend logs

 Vis.structure – visualization structure definition

 Visualization– Visualization creation, control and monitoring

 Vis.graphics– icon, background, font management

 Utilities – utilities including import from ETS, reset object DB, backup, update system
installation

 User access – user access level definition

 BACnet – BACnet client with scanner

 DALI – DALI master (over RS485 gateway)

 Modbus – Modbus mapper

 BLE – Bluetooth device mapping

 Alerts – alert messages defined with alert function

 Logs – log messages defined with log function

 Error log – error messages in KNX bus

 Help – documentation for scripting syntaxes

58

6.1. Scripting

Scripting menu allows adding and managing various scripts, depending on the type of the
script. There are two ways to program logics – blocks and via Lua programming language. Most
of the Lua language aspects are covered in the first edition of "Programming in Lua" which is
freely available at http://lua.org/pil/

Note! Here is available LUA Reference Manual for LogicMachine:
http://openrb.com/docs/lua.htm

There are six main types of scripts:

Event-based – scripts that are executed when a group event occurs on the bus. Usually used when nearly

real-time response is required.

Resident– scripts that use polling to check for object state changes. Usually used for heating and ventilation

when data is gathered from more than one group address.

Scheduled– scripts that run at the required time and day. Can be used for various security systems and

presence simulations.

User libraries – user defined scripts to call from other scripts

Common functions – common functions to call from other scripts

Start-up (init) script – initialization script that is run upon system starting.

6.1.1. Block programming

In order to create blocks, enable this functionality in Utilities General configuration
Enable Block Editor.

Once the script is added, you can see puzzle icon to access Block editor.

http://lua.org/pil/
http://openrb.com/docs/lua.htm

59

Blocks are sorted by categories on the left side. Each block is puzzle based and can be put only
in appropriate location / other block.

If the block is indicated with the blue label on the top left corner, you can define the structure
of the block (e.g. If Else)

Press Delete button or drag the block to the garbage if you want to delete it

60

You can always look at the LUA code by clicking on Show/Hide Lua code button. This will allow
to learn the scripting language.

6.1.2. Block functions

In Scripting menu there is Block functions button. Here you can create custom block functions
which can be later used as ready block in Block editor.

Each function must have a special comment in order to be converted to a block.

 First line must have Function keyword followed by the function name

 Second line contains short function description which is shown as block title

61

 If third line contains Comment keyword, all following lines until Input or
Output will be added to block comment tooltip

 Optionally, block color may be specified in hexadecimal format (#f00 or
#ff9900) or numeric format as hue value between 0 and 359

 Following lines contain input and output lists. Each block can have any
number of inputs and outputs:
Inputs are a function parameter, other blocks can be connected to inputs by
default. If input definition has [object], [storage] or [tag] in its name then the
input is replaced with object, storage or tag selection input.

Each output variable is assigned to the corresponding function return value.

Example:

--- Function invert
--- Write inverted value
--- Comment
--- Set target object value to
--- inverse of source object value
--- Color #f90
--- Input
--- Source object [object]
--- Target object [object]
function invert(a, b)
local value = grp.getvalue(a)
grp.write(b, not value, dt.bool)
end

Once block function is added, it is available as a block in Block editor.

62

6.1.3. Adding a new script

Click on Add new script button on the bottom part of the Event-based, Resident or Scheduled
submenus

The following fields should be filled when adding a new script:

Event-based

 Script name – the name of the script
 Group address / Tag – specific group address or tag name on which the script will be

triggered
 Active– specifies whether the script is active (green circle) or disabled (red circle)
 Execute on group read– specifies whether the script is executed on KNX group read

telegram

63

 Category – a new or existing name of the category the script will be included. This
will not affect on script action, helps only by grouping the scripts and watching by
categories in To script listings page

 Description– description of the script

Resident

 Script name – the name of the script
 Sleep interval (seconds) – interval after which the script will be executed.
 Active– specifies whether the script is active (green circle) or disabled (red circle)
 Category – a new or existing name of the category the script will be included. This will

not affect on script action, helps only by grouping the scripts and watching by categories
in script listings page

 Description– description of the script

Scheduled

64

 Script name – the name of the script
 Minute – Minute
 Hour – Hour
 Day of the month – Day of the month
 Month of the year – Month of the year
 Day of the week – Day of the week
 Active– specifies whether the script is active (green circle) or disabled (red circle)
 Category – a new or existing name of the category the script will be included. This

will not affect on script action, helps only by grouping the scripts and watching by
categories in script listings page

 Description– description of the script

List of scripts

There are five actions you can do with each of the script:

Duplicate – Duplicate the script with its source code
Editor – Enter scripting editor to write specific code for the particular program. It can be
source code editor or block programming
Active – Make script active (green) or deactivate it (red)
Delete – Delete the script. When pressing this icon the confirmation is asked to accept
the delete.

6.1.4. Event-based scripting

Event-based scripting can be used to implement custom logic for group address or tag events.
User-defined function is executed when a "group write" or “group read” (if checked while
adding the script) event occurs for given group address. Event information is stored in global
event variable.Variable contents:

 dstraw (integer) — raw destination group address
 srcraw (integer) — raw source individual address
 dst (string) — decoded destination group address (for example: 1/1/4)
 src (string) — decoded source individual address (for example: 1.1.2)
 type (string) — type of event, either "groupwrite", "groupread", "groupresponse".

Currently user-defined scripts are bound to "group write" events only.

65

 dataraw (integer/string) — raw binary data
 datahex (string) — data as a hex-encoded string which can be used to convert value to

Lua variable

Note! event variable is available only in Event-based functions, not in Resident and Scheduled.

Note! All event-based scripts are executed in a single queue-like manner. Make sure event
scripts do not contain infinite loops, sleep calls or other blocking parts.

Note! To get event value in scripts, use the following command: a = event.getvalue()

Note! To get event group address object name, use the following command:
a = grp.alias(event.dst)

6.1.5. Resident scripting

Resident scripts are executed infinite amount of times. Scripts are put into inactive state after
each call and are resumed after delay timer expires.

Note! even though resident scripts are executed in parallel they should not have infinite loops or
it will not be possible to reload scripts after editing.

6.1.6. Scheduled scripting

Scheduled scripts are executed when the system time matches the specified script start time.
Scheduled script is run only once after each timer call.

66

6.1.7. Script editor

When a script is added icon appears in Editor column that allows opening a script in
scripting editor and re-working it with built-in code snippets.

The idea is that not knowing the syntaxes you get a helper for writing your own scripts. Code
snippets save also a time and make the coding much more convenient. After clicking on
appropriate snippet, it automatically adds code to the editor field.

There are three main groups of Script editor:

Helpers – predefined code snippets, like if-then statement. Helpers consist of three main sub-
groups:

Conditionals – If Else If, If Then etc.
Loops and iterators – Array, Repeat..Untiletc
Math – Random value, Ceiling, Absolute value, Round etc.
Objects/KNX bus – Get object value, Group read, Group write, Update interval etc.
Storage – Get data from storage, Save data to storage
Script control – Get other script status, enable or disable other scripts
Alerts and logs – Alert, Log variables, Formatted alert
Time functions – Delay script execution
Miscellaneous – Sunrise/sunset etc.
Serial – Communication through internal LogicMachine IO ports
Modbus – Create RTU/TCP connection, Write register, Read register etc.
DMX – Communication with DMX devices

Data types – choose object by data type
Scripts – list of all scripts added in the LogicMachine
Code helpers on the right side of the editor

67

There is a special section in scripting editor which allows quickly find functions, objects or tags
by name and storage variables.

There is also a code shortcut button, which helps with most common function structure.

There are also following helpful button in the script editor, which allows quickly access Error
Logs, Test the script, Enable or disable it.

6.1.8. Object functions

grp provides simplified access to the objects stored in the database and group address request
helpers.

68

Most functions use alias parameter — object group address or unique object name. (e.g. '1/1/1'
or 'My object')

grp.getvalue(alias)
Returns value for the given alias or Lua nil when object cannot be found.

grp.find(alias)
Returns single object for the given alias. Object value will be decoded automatically only if the
data type has been specified in the 'Objects' module. Returns Lua nil when object cannot be
found, otherwise it returns Lua table with the following items:

 address — object group address

 updatetime — latest update time in UNIX timestamp format. Use Lua os.date() to convert
to readable date formats

When object data type has been specified in the 'Objects' module the following fields are
available:

 name — unique object name

 datatype — object data type as specified by user

 decoded — set to true when decoded value is available

 value — decoded object value

grp.tag(tags, mode)
Returns Lua table containing objects with the given tag. Tags parameter can be either
Lua table or a string. Mode parameter can be either 'all' (return objects that have all of the
given tags) or 'any' (default — returns objects that have any of the given tags). You can
useReturned object functions on the returned table.

grp.alias(alias)
Converts group address to object name or name to address. Returns Lua nil when object cannot
be found.

6.1.9. Returned object functions, group communication functions

Objects received by using grp.find(alias) or grp.tag(tags, mode) have the following functions
attached to them:

Always check that the returned object was found otherwise calling these functions will result in
an error. See the example below.

object:write(value, datatype)
Sends group write request to object's group address. Data type is taken from the database if
not specified as second parameter. Returns Lua boolean as the result.

69

object:response(value, datatype)
Similar to object:write. Sends group response request to object's group address.

object:read()
Sends group read request to object's group address. Note: this function returns immediately
and cannot be used to return the result of read request. Use event-based script instead.

object:update(value, datatype)
Similar to object:write, but does not send new value to the bus. Useful for objects that are used
only in visualization.

6.1.10. Group communication functions

These functions should only be used if it is required to access objects by group address directly,
it is recommended to use single or multiple object functions.

grp.write(alias, value, datatype)
Sends group write request to the given alias. Data type is taken from the database if not
specified as third parameter. Returns Lua boolean as the result.

grp.response(alias, value, datatype)
Similar to grp.write. Sends group response request to the given alias.

grp.read(alias)
Sends group read request to the given alias. Note: this function returns immediately and cannot
be used to return the result of read request. Use event-based script instead.

grp.update(alias, value, datatype)
Similar to grp.write, but does not send new value to the bus. Useful for objects that are used
only in visualization.

6.1.11. Object function examples

Find object by name and write new value.

1. myobject=grp.find('My object')

2. -- grp.find will return nil if object was not found

3. if myobjectthen

4. myobject:write(1)-- update object value with 1

5. end

Find object by address and write new value.

1. myobject=grp.find('1/1/15')

70

2. -- verify that the requested object was found

3. if myobject then

4. myobject:write(52.12, dt.float16)-- explicitly set data type to dt.float16 (2-byte

floating point)

5. end

Switch all binary objects tagged 'lights' off.

1. lights =grp.tag('lights')

2. lights:write(false)

Group write to the specified group address and data type.

1. grp.write('1/1/1', true, dt.bool)-- write 1-bit 'on' to 1/1/1

2. grp.write('1/1/2', 50, dt.scale)-- write 1-byte 50% to 1/1/2

6.1.12. Data type functions, data types

knxdatatype object provides data encoding and decoding between Lua and KNX data formats.

knxdatatype.decode(value, datatype)
Converts hex-encoded data to Lua variable based on given data type. Data type is specified
either as KNX primary data type (integer between 1 and 16) or a secondary data type (integer
between 1000 and 16000).Return values:

 success — decoded data as Lua variable (type depends on data type), value length in
bytes

 error — nil, error string

6.1.13. Data types

The following data types can be used for encoding and decoding of KNX data. Data
representation on Lua level and predefined constants (in bold) is given below:

 1 bit (boolean) - dt.bool — boolean

 2 bit (1 bit controlled) - dt.bit2 — number

 4 bit (3 bit controlled) - dt.bit4 — number

 1 byte ASCII character - dt.char — string

 1 byte unsigned integer - dt.uint8 — number

 1 byte signed integer - dt.int8 — number

 2 byte unsigned integer - dt.uint16 — number

 2 byte signed integer - dt.int16 — number

 2 byte floating point - dt.float16 — number

 3 byte time / day - dt.time — table with the following items:
o day — number (0-7)

71

o hour — number (0-23)
o minute — number (0-59)
o second — number (0-59)

 3 byte date - dt.date — table with the following items:
o day — number (1-31)
o month — number (1-12)
o year — number (1990-2089)

 4 byte unsigned integer - dt.uint32 — number

 4 byte signed integer - dt.int32 — number

 4 byte floating point - dt.float32 — number

 4 byte access control - dt.access — number, currently not fully supported

 14 byte ASCII string - dt.string — string, null characters ('\0') are discarded during
decoding

6.1.14. Data storage function

storage object provides persistent key-value data storage for user scripts. Only the following
Lua data types are supported:

 boolean

 number

 string

 table

storage.set(key, value)
Sets new value for the given key. Old value is overwritten. Returns boolean as the result and an
optional error string.

storage.get(key, default)
Gets value for the given key or returns default value (nil if not specified) if key is not found in
the data storage.

Note: all user scripts share the same data storage. Make sure that same keys are not used to
store different types of data.

Examples

 The following examples shows the basic syntax of storage.set. Result will return
boolean true since the passed parameters are correct

result=storage.set('my_stored_value_1', 12.21)

 This example will return false as the result because we are trying to store a function
which is not possible.

72

1. testfn=function(t)

2. return t * t

3. end

4. result =storage.set('my_stored_value_2', testfn)-- this will result in an error

 The following examples shows the basic syntax of storage.get. Assuming that key value
was not found, first call will return nil while second call will return number 0 which was
specified as a default value.

1. result =storage.get('my_stored_value_3')-- returns nil if value is not found

2. result =storage.get('my_stored_value_3', 0)-- returns 0 if value is not found

 When storing tables make sure to check the returned result type. Assume we have
created a storage item with key test_object_data.

1. objectdata={}

2. objectdata.temperature=23.1

3. objectdata.scene='default'

4. result =storage.set('test_object_data', objectdata)-- store objectdata variable as

'test_object_data'

 Now we are retrieving data from storage. Data type is checked for correctness.

1. objectdata=storage.get('test_object_data')

2. if type(objectdata)=='table' then

3. if objectdata.temperature> 24 then

4. -- do something if temperature level is too high

5. end

6. end

6.1.15. Alert function

alert(message, [var1, [var2, [var3]]])
Stores alert message and current system time in the main database. All alerts are accessible in
the "Alerts" module. This function behaves exactly as Lua string.format.

Example

1. temperature = 25.3

2. if temperature > 24 then

3. -- resulting message: 'Temperature levels are too high: 25.3'

4. alert('Temperature level is too high: %.1f', temperature)

5. end

73

6.1.16. Log function

log(var1, [var2, [var3, ...]])
Converts variables to human-readable form and stores them in the main database. All items are
accessible in the "Logs" module.

Example

1. -- log function accepts Lua nil, boolean, number and table (up to 5 nested levels) type

variables

2. a ={ key1 ='value1', key2 =2}

3. b ='test'

4. c =123.45

5. -- logs all passed variables

6. log(a, b, c)

6.1.17. Scheduled scripting date/time format

Scheduled scripting uses standard cron format for date/time parameters. Valid values are:

* — execute script every minute, hour or day.

*/N — execute script every N minutes, hours or days. N is an integer, script is executed
when current value divided by N gives 0 in modulo. For example, script with hour
parameter set to */8 will be executed when hour is 0, 8 and 16.

N — execute script exactly at N minute, hour or day.

N-K — execute script when minute, hour or day is between N-K range (inclusive).

N,K — it is possible to specify several N and N-K type parameters separated by comma.
For example, script with minute parameter set to 15,50-52 will get executed when minute
is 15, 50, 51 and 52

6.1.18. Time function

os.sleep(delay)
Delay the next command execution for the delay seconds.

os.microtime ()
Returns two values: current timestamp in seconds and timestamp fraction in nanoseconds

os.udifftime (sec, usec)
Returns time difference as floating point value between now and timestamp components
passed to this function (seconds, nanoseconds)

http://en.wikipedia.org/wiki/Cron

74

6.1.19. Data Serialization

serialize.encode (value)
Generates a storable representation of a value.

serialize.decode (value)
Creates a Lua value from a stored representation.

6.1.20. String functions

This library provides generic functions for string manipulation, such as finding and extracting
substrings, and pattern matching. When indexing a string in Lua, the first character is at
position 1 (not at 0, as in C).
Indices are allowed to be negative and are interpreted as indexing backwards, from the end of
the string. Thus, the last character is at position -1, and so on.
The string library provides all its functions inside the table string. It also sets a meta table for
strings where the __index field points to the string table. Therefore, you can use the string
functions in object-oriented style. For instance, string.byte(s, i) can be written as s:byte(i).The
string library assumes one-byte character encodings.

string.trim (str)
Trims the leading and trailing spaces off a given string.

string.split (str, sep)
Splits string by given separator string. Returns Lua table.

string.byte (s [, i [, j]])
Returns the internal numerical codes of the characters s*i+, s*i+1+, ···, s*j+. The default value for i
is 1;the default value for j is i.Note that numerical codes are not necessarily portable across
platforms.

string.char (···)
Receives zero or more integers. Returns a string with length equal to the number of arguments,
in which each character has the internal numerical code equal to its corresponding argument.
Note that numerical codes are not necessarily portable across platforms.

string.find (s, pattern [, init [, plain]])
Looks for the first match of pattern in the string s. If it finds a match, then find returns the
indices of s where this occurrence starts and ends; otherwise, it returns nil. A third, optional
numerical argument init specifies where to start the search; its default value is 1 and can be
negative. A value of true as a fourth, optional argument plain turns off the pattern matching
facilities, so the function does a plain "find substring" operation, with no characters in pattern
being considered "magic". Note that if plain is given, then init must be given as well. If the
pattern has captures, then in a successful match the captured values are also returned, after
the two indices.

75

string.format (formatstring, ···)
Returns a formatted version of its variable number of arguments following the description
given in its first argument (which must be a string). The format string follows the same rules as
the printf family of standard C functions. The only differences are that the options/modifiers *,
l, L, n, p, and h are not supported and that there is an extra option, q. The q option formats a
string in a form suitable to be safely read back by the Lua interpreter: the string is written
between double quotes, and all double quotes, newlines, embedded zeros, and backslashes in
the string are correctly escaped when written. For instance, the call

string.format('%q', 'a string with "quotes" and \n new line')

will produce the string:

 "a string with \"quotes\" and \

 new line"

The options c, d, E, e, f, g, G, i, o, u, X, and x all expect a number as argument, whereas q and s
expect a string. This function does not accept string values containing embedded zeros, except
as arguments to the q option.

string.gmatch (s, pattern)
Returns an iterator function that, each time it is called, returns the next captures from pattern
over strings. If pattern specifies no captures, then the whole match is produced in each call. As
an example, the following loop

1. s ="hello world from Lua"
2. for w instring.gmatch(s, "%a+")do
3. print(w)
4. end

will iterate over all the words from string s, printing one per line. The next example collects all
pairs key=value from the given string into a table:

1. t ={}
2. s ="from=world, to=Lua"
3. for k, v instring.gmatch(s, "(%w+)=(%w+)") do
4. t[k]= v
5. end

For this function, a '^' at the start of a pattern does not work as an anchor, as this would
prevent the iteration.

string.gsub (s, pattern, repl [, n])
Returns a copy of s in which all (or the first n, if given) occurrences of the pattern have been
replaced by are placement string specified by repl, which can be a string, a table, or a function.
gsub also returns, as its second value, the total number of matches that occurred.
If repl is a string, then its value is used for replacement. The character % works as an escape
character:any sequence in repl of the form %n, with n between 1 and 9, stands for the value of
the n-th capture dsub string (see below). The sequence %0 stands for the whole match. The
sequence %% stands for a single %.
If repl is a table, then the table is queried for every match, using the first capture as the key; if
the pattern specifies no captures, then the whole match is used as the key.

76

If repl is a function, then this function is called every time a match occurs, with all captured
substrings passed as arguments, in order; if the pattern specifies no captures, then the whole
match is passed as a sole argument.
If the value returned by the table query or by the function call is a string or a number, then it is
used as the replacement string; otherwise, if it is false or nil, then there is no replacement (that
is, the original match is kept in the string).

Examples:
x =string.gsub("hello world", "(%w+)", "%1 %1")
 --> x="hello hello world world"

x =string.gsub("hello world", "%w+", "%0 %0", 1)
 --> x="hello hello world"

x =string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")
 --> x="world hello Lua from"

x =string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)

--> x="home = /home/roberto, user = roberto"

x =string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function(s)
returnloadstring(s)()
end)

--> x="4+5 = 9"

local t ={name="lua", version="5.1"}

x =string.gsub("$name-$version.tar.gz", "%$(%w+)", t)

--> x="lua-5.1.tar.gz"

string.len (s)

Receives a string and returns its length. The empty string "" has length 0. Embedded zeros are
counted, so"a\000bc\000" has length 5.

string.lower (s)
Receives a string and returns a copy of this string with all uppercase letters changed to
lowercase. All other characters are left unchanged. The definition of what an uppercase letter is
depends on the current locale.

string.match (s, pattern [, init])
Looks for the first match of pattern in the string s. If it finds one, then match returns the
captures from the pattern; otherwise it returns nil. If pattern specifies no captures, then the
whole match is returned. A third, optional numerical argument init specifies where to start the
search; its default value is 1 and can be negative.

string.rep (s, n)
Returns a string that is the concatenation of n copies of the string s.

string.reverse (s)
Returns a string that is the string s reversed.

string.sub (s, i [, j])
Returns the substring of s that starts at i and continues until j; i and j can be negative. If j is
absent, then it is assumed to be equal to -1 (which is the same as the string length). In

77

particular, the callstring.sub(s,1,j) returns a prefix of s with length j, and string.sub(s, -i) returns
a suffix of s with length i.

string.upper (s)
Receives a string and returns a copy of this string with all lowercase letters changed to
uppercase. All other characters are left unchanged. The definition of what a lowercase letter is
depends on the current locale.

Patterns
Character Class:
A character class is used to represent a set of characters. The following combinations are
allowed in describing a character class:

• x: (where x is not one of the magic characters ^$()%.[]*+-?) represents the character x
itself.
• .: (a dot) represents all characters.
• %a: represents all letters.
• %c: represents all control characters.
• %d: represents all digits.
• %l: represents all lowercase letters.
• %p: represents all punctuation characters.
• %s: represents all space characters.
• %u: represents all uppercase letters.
• %w: represents all alphanumeric characters.
• %x: represents all hexadecimal digits.
• %z: represents the character with representation 0.
• %x: (where x is any non-alphanumeric character) represents the character x. This is the
standard way to escape the magic characters. Any punctuation character (even the non
magic) can be preceded by a '%' when used to represent itself in a pattern.
• [set]: represents the class which is the union of all characters in set. A range of
characters can be specified by separating the end characters of the range with a '-'. All
classes %x described above can also be used as components in set. All other characters
in set represent themselves. For example,[%w_] (or [_%w]) represents all alphanumeric
characters plus the underscore, [0-7] represents the octal digits, and [0-7%l%-]
represents the octal digits plus the lowercase letters plus the '-'character.
• The interaction between ranges and classes is not defined. Therefore, patterns like
[%a-z]or [a-%%] have no meaning.
• [^set]: represents the complement of set, where set is interpreted as above.

For all classes represented by single letters (%a, %c, etc.), the corresponding uppercase letter
represents the complement of the class. For instance, %S represents all non-space characters.
The definitions of letter, space, and other character groups depend on the current locale. In
particular, the class [a-z] may not be equivalent to %l.

Pattern Item:
A pattern item can be:

• a single character class, which matches any single character in the class;
• a single character class followed by '*', which matches 0 or more repetitions of
characters in the class. These repetition items will always match the longest possible
sequence;

78

• a single character class followed by '+', which matches 1 or more repetitions of
characters in the class. These repetition items will always match the longest possible
sequence;
• a single character class followed by '-', which also matches 0 or more repetitions of
characters in the class. Unlike '*', these repetition items will always match the shortest
possible sequence;
• a single character class followed by '?', which matches 0 or 1 occurrence of a character
in the class;
• %n, for n between 1 and 9; such item matches a substring equal to the n-th captured
string (see below);
• %bxy, where x and y are two distinct characters; such item matches strings that start
with x, end with y, and where the x and y are balanced. This means that, if one reads the
string from left to right, counting +1 for an x and -1 for a y, the ending y is the first y
where the count reaches 0. For instance, the item %b() matches expressions with
balanced parentheses.

Pattern:
A pattern is a sequence of pattern items. A '^' at the beginning of a pattern anchors the match
at the beginning of the subject string. A '$' at the end of a pattern anchors the match at the end
of the subject string. At other positions, '^' and '$' have no special meaning and represent
themselves.

Captures:
A pattern can contain sub-patterns enclosed in parentheses; they describe captures. When a
match succeeds, the substrings of the subject string that match captures are stored (captured)
for future use. Captures are numbered according to their left parentheses. For instance, in the
pattern "(a*(.)%w(%s*))",the part of the string matching "a*(.)%w(%s*)" is stored as the first
capture (and therefore has number 1);the character matching "." is captured with number 2,
and the part matching "%s*" has number 3.
As a special case, the empty capture () captures the current string position (a number). For
instance, if we apply the pattern "()aa()" on the string "flaaap", there will be two captures: 3
and 5.A pattern cannot contain embedded zeros. Use %z instead.

6.1.21. Input and output functions

io.exists (path)
Checks if given path (file or directory) exists. Return boolean.

io.readfile (file)
Reads whole file at once. Return file contents as a string on success or nil on error.

io.writefile (file, data)
Writes given data to a file. Data can be either a value convertible to string or a table of such
values. When data is a table then each table item is terminated by a new line character. Return
boolean as write result when file can be open for writing or nil when file cannot be accessed.

Example: Write event status to log file located on plugged USB flash drive:

79

1. value = knxdatatype.decode(event.datahex, dt.bool)

2. data =string.format('%s value is %s', os.date('%c'), tostring(value))

3. -- write to the end of log file preserving all previous data

4. file =io.open('/mnt/usb/log.txt', 'a+')

5. file:write(data .. '\r\n')

6. file:close()

Output:

Mon Jan 3 05:25:13 2011 value is false
Mon Jan 3 05:25:14 2011 value is true
Mon Jan 3 05:25:32 2011 value is false
Mon Jan 3 05:25:33 2011 value is true

Example: Read data from file (config in format key=value)

1. for line inio.lines('/mnt/usb/config.txt')do

2. -- split line by '=' sing

3. items = line:split('=')

4. -- two items, line seems to be valid

5. if #items == 2 then

6. key = items[1]:trim()

7. value = items[2]:trim()

8. alert('[config] %s = %s', key, value)

9. end

10. end

6.1.22. Script control functions

script.enable('scriptname')
Enable the script with the name scriptname.

script.disable('scriptname')
Disable the script with the name scriptname.

status = script.status('scriptname')
Returns true/false if script is found, nil otherwise

6.1.23. JSON library

Note: json is not loaded by default, use require('json') before calling any functions from this
library.

json.encode (value)

80

Converts Lua variable to JSON string. Script execution is stopped in case of an error.

json.pencode (value)
Converts Lua variable to JSON string in protected mode, returns nil on error.

json.decode (value)
Converts JSON string to Lua variable. Script execution is stopped in case of an error.

json.pdecode (value)
Converts JSON string to Lua variable in protected mode, returns nil on error.

6.1.24. Conversion

Compatibility layer:lmcore is an alias of cnv.

cnv.strtohex (str)
Converts given binary string to a hex-encoded string.

cnv.hextostr (hex [, keepnulls])
Converts given hex-encoded string to a binary string. NULL characters are ignored by default,
but can be included by setting second parameter to true.

cnv.tonumber (value)
Converts the given value to number using following rules: numbers and valid numeric strings
are treated as is, boolean true is 1, boolean false is 0, everything else is nil.

cnv.hextoint(hexvalue, bytes)
Converts the given hex string to and integer of a given length in bytes.

cnv.inttohex(intvalue, bytes)
Converts the given integer to a hex string of given bytes.

cnv.strtohex(str)
Converts the given binary string to a hex-encoded string.

cnv.hextostr(hexstr)
Converts the given hex-encoded string to a binary string.

6.1.25. Bit operators

bit.bnot (value)
Binary not

81

bit.band (x1 [, x2...])
Binary and between any number of variables

bit.bor (x1 [, x2...])
Binary and between any number of variables

bit.bxor (x1 [, x2...])
Binary and between any number of variables

bit.lshift (value, shift)
Left binary shift

bit.rshift (value, shift)
Right binary shift

6.1.26. Input and Output Facilities

The I/O library provides two different styles for file manipulation. The first one uses implicit file
descriptors; that is, there are operations to set a default input file and a default output file, and
all input/output operations are over these default files. The second style uses explicit file
descriptors.
When using implicit file descriptors, all operations are supplied by table io. When using explicit
file descriptors, the operation io.open returns a file descriptor and then all operations are
supplied as methods of the file descriptor.
The table io also provides three predefined file descriptors with their usual meanings from C:
io.stdin, io.stdout, and io.stderr. The I/O library never closes these files.
Unless otherwise stated, all I/O functions return nil on failure (plus an error message as a
second result and a system-dependent error code as a third result) and some value different
from nil on success.

io.close ([file])
Equivalent to file:close(). Without a file, closes the default output file.

io.flush ()
Equivalent to file:flush over the default output file.

io.input ([file])
When called with a file name, it opens the named file (in text mode), and sets its handle as the
default input file. When called with a file handle, it simply sets this file handle as the default
input file. When called without parameters, it returns the current default input file. In case of
errors this function raises the error, instead of returning an error code.

io.lines ([filename])
Opens the given file name in read mode and returns an iterator function that, each time it is
called, returns a new line from the file. Therefore, the construction

for line in io.lines(filename) do body end

82

will iterate over all lines of the file. When the iterator function detects the end of file, it returns
nil (to finishthe loop) and automatically closes the file.
The call io.lines() (with no file name) is equivalent to io.input():lines(); that is, it iterates over the
lines of the default input file. In this case it does not close the file when the loop ends.

io.open (filename [, mode])
This function opens a file, in the mode specified in the string mode. It returns a new file handle,
or, in case of errors, nil plus an error message. The mode string can be any of the following:

• "r": read mode (the default);
• "w": write mode;
• "a": append mode;
• "r+": update mode, all previous data is preserved;
• "w+": update mode, all previous data is erased;
• "a+": append update mode, previous data is preserved, writing is only allowed at the
end of file.

The mode string can also have a 'b' at the end, which is needed in some systems to open the
file in binary mode. This string is exactly what is used in the standard C function fopen.

io.output ([file])
Similar to io.input, but operates over the default output file.

6.1.27. Mathematical functions

This library is an interface to the standard C math library. It provides all its functions inside the
table math.

math.abs (x)
Returns the absolute value of x.

math.acos (x)
Returns the arc cosine of x (in radians).

math.asin (x)
Returns the arc sine of x (in radians).

math.atan (x)
Returns the arc tangent of x (in radians).

math.atan2 (y, x)
Returns the arc tangent of y/x (in radians), but uses the signs of both parameters to find the
quadrant of the result. (It also handles correctly the case of x being zero.)

math.ceil (x)
Returns the smallest integer larger than or equal to x.

math.cos (x)

83

Returns the cosine of x (assumed to be in radians).

math.cosh (x)
Returns the hyperbolic cosine of x.

math.deg (x)
Returns the angle x (given in radians) in degrees.

math.exp (x)
Returns the value .

math.floor (x)
Returns the largest integer smaller than or equal to x.

math.fmod (x, y)
Returns the remainder of the division of x by y that rounds the quotient towards zero.

math.frexp (x)
Returns m and e such that x = , e is an integer and the absolute value of m is in the range
[0.5, 1) (or zero when x is zero).

math.huge
The value HUGE_VAL, a value larger than or equal to any other numerical value.
math.ldexp (m, e)
Returns ,(e should be an integer).

math.log (x)
Returns the natural logarithm of x.

math.log10 (x)
Returns the base-10 logarithm of x.

math.max (x, ···)
Returns the maximum value among its arguments.

math.min (x, ···)
Returns the minimum value among its arguments.

math.modf (x)
Returns two numbers, the integral part of x and the fractional part of x.

math.pi
The value of pi.

math.pow (x, y)
Returns . (You can also use the expression x^y to compute this value.)

math.rad (x)
Returns the angle x (given in degrees) in radians.

84

math.random ([m [, n]])
This function is an interface to the simple pseudo-random generator function rand provided by
ANSI C. (No guarantees can be given for its statistical properties.)
When called without arguments, returns a uniform pseudo-random real number in the range
[0,1). When called with an integer number m, math. random returns a uniform pseudo-random
integer in the range [1,m]. When called with two integer numbers m and n, math. random
returns a uniform pseudo-random integer in the range [m, n].

math.randomseed (x)
Sets x as the "seed" for the pseudo-random generator: equal seeds produce equal sequences of
numbers.

math.sin (x)
Returns the sine of x (assumed to be in radians).

math.sinh (x)
Returns the hyperbolic sine of x.

math.sqrt (x)
Returns the square root of x. (You can also use the expression x^0.5 to compute this value.)

math.tan (x)
Returns the tangent of x (assumed to be in radians).

math.tanh (x)
Returns the hyperbolic tangent of x.

6.1.28. Table manipulations

This library provides generic functions for table manipulation. It provides all its functions inside
the table. Most functions in the table library assume that the table represents an array or a list.
For these functions, when we talk about the "length" of a table we mean the result of the
length operator.

table.concat (table [, sep [, i [, j]]])
Given an array where all elements are strings or numbers, returns table*i+..sep..table*i+1+ ···
sep..table[j]. The default value for sep is the empty string, the default for i is 1, and the default
for j is the length of the table. If i is greater than j, returns the empty string.

table.insert (table, [pos,] value)
Inserts element value at position pos in table, shifting up other elements to open space, if
necessary. The default value for pos is n+1, where n is the length of the table, so that a
calltable.insert(t,x) inserts x at the end of table t.

table.maxn (table)

85

Returns the largest positive numerical index of the given table, or zero if the table has no
positive numerical indices. (To do its job this function does a linear traversal of the whole
table.)

table.remove (table [, pos])
Removes from table the element at position pos, shifting down other elements to close the
space, if necessary. Returns the value of the removed element. The default value for pos is n,
where n is the length of the table, so that a call table.remove(t) removes the last element of
table t.

table.sort (table [, comp])
Sorts table elements in a given order, in-place, from table[1] to table[n], where n is the length
of the table. If comp is given, then it must be a function that receives two table elements, and
returns true when the first is less than the second (so that not comp(a[i+1],a[i]) will be true
after the sort). If comp is not given, then the standard Lua operator < is used instead.
The sort algorithm is not stable; that is, elements considered equal by the given order may have
their relative positions changed by the sort.

6.1.29. Operating system facilities

os.date ([format [, time]])
Returns a string or a table containing date and time, formatted according to the given string
format. If the time argument is present, this is the time to be formatted (see the os.time
function for a description of this value). Otherwise, date formats the current time.
If format starts with '!', then the date is formatted in Coordinated Universal Time. After this
optional character, if format is the string "*t", then date returns a table with the following
fields: year (four digits),month (1--12), day (1--31), hour (0--23), min (0--59), sec (0--61), wday
(weekday, Sunday is 1), yday (dayof the year), and isdst (daylight saving flag, a boolean).
If format is not "*t", then date returns the date as a string, formatted according to the same
rules as the C function strftime.
When called without arguments, date returns a reasonable date and time representation that
depends on the host system and on the current locale (that is, os.date() is equivalent to
os.date("%c")).

os.difftime (t2, t1)
Returns the number of seconds from time t1 to time t2. In POSIX, Windows, and some other
systems, this value is exactly t2-t1.

os.execute ([command])
This function is equivalent to the C function system. It passes command to be executed by an
operating system shell. It returns a status code, which is system-dependent. If command is
absent, then it returns nonzero if a shell is available and zero otherwise.

os.exit ([code])
Calls the C function exit, with an optional code, to terminate the host program. The default
value for code is the success code.

os.getenv (varname)

86

Returns the value of the process environment variable varname, or nil if the variable is not
defined.

os.remove (filename)
Deletes the file or directory with the given name. Directories must be empty to be removed. If
this function fails, it returns nil, plus a string describing the error.

os.rename (oldname, newname)
Renames file or directory named oldname to newname. If this function fails, it returns nil, plus a
string describing the error.

os.time ([table])
Returns the current time when called without arguments, or a time representing the date and
time specified by the given table. This table must have fields year, month, and day, and may
have fields hour, min, sec,and isdst (for a description of these fields, see the os.date function).
The returned value is a number, whose meaning depends on your system. In POSIX, Windows,
and some other systems, this number counts the number of seconds since some given start
time (the "epoch"). In other systems, the meaning is not specified, and the number returned by
time can be used only as an argument to date and difftime.

os.tmpname ()
Returns a string with a file name that can be used for a temporary file. The file must be
explicitly opened before its use and explicitly removed when no longer needed. On some
systems (POSIX), this function also creates a file with that name, to avoid security risks.
(Someone
else might create the file with wrong permissions in the time between getting the name and
creating the file.) You still have to open the file to use it and to remove it (even if you do not
use it).
When possible, you may prefer to use io.tmpfile, which automatically removes the file when
the program
ends.

87

6.1.30. Extended function library

toboolean(value)
Converts the given value to boolean using following rules: nil,
boolean false, 0, empty string, '0' string are treated as false, everything else as true

string.split(str, sep)
Splits the given string into chunks by the given separator. Returns Lua table.

knxlib.decodeia(indaddressa, indaddressb)
Converts binary-encoded individual address to Lua string. This function accepts either one or
two arguments (interpreted as two single bytes).

knxlib.decodega(groupaddressa, groupaddressb)
Converts binary-encoded group address to Lua string. This function accepts either one or two
arguments (interpreted as two single bytes).

knxlib.encodega(groupaddress, separate)
Converts Lua string to binary-encoded group address. Returns group address a single Lua
number when second argument is nil or false and two separate bytes otherwise.

ipairs (t)
Returns three values: an iterator function, the table t, and 0, so that the construction

for i,v in ipairs(t)do body end

will iterate over the pairs (1,t*1+), (2,t*2+), ···, up to the first integer key absent from the table.

next (table [, index])
Allows a program to traverse all fields of a table. Its first argument is a table and its second
argument is an index in this table. next returns the next index of the table and its associated
value. When called with nil as its second argument, next returns an initial index and its
associated value. When called with the last index, or with nil in an empty table, next returns nil.
If the second argument is absent, then it is interpreted asnil. In particular, you can use next(t) to
check whether a table is empty. The order in which the indices are enumerated is not specified,
even for numeric indices. (To traverse a table in numeric order, use a numerical for or the ipairs
function.)The behavior of next is undefined if, during the traversal, you assign any value to a
non-existent field in the table. You may however modify existing fields. In particular, you may
clear existing fields.

pairs (t)
Returns three values: the next function, the table t, and nil, so that the construction

for k,v inpairs(t)do body end

will iterate over all key–value pairs of table t.

tonumber (e [, base])

88

Tries to convert its argument to a number. If the argument is already a number or a string
convertible to a number, then tonumber returns this number; otherwise, it returns nil.
An optional argument specifies the base to interpret the numeral. The base may be any integer
between 2and 36, inclusive. In bases above 10, the letter 'A' (in either upper or lower case)
represents 10, 'B'represents 11, and so forth, with 'Z' representing 35. In base 10 (the default),
the number can have a decimal part, as well as an optional exponent part. In other bases, only
unsigned integers are accepted.

tostring (e)
Receives an argument of any type and converts it to a string in a reasonable format. For
complete control of how numbers are converted, use string.format.
If the meta table of e has a "__tostring" field, then tostring calls the corresponding value with e
as
argument, and uses the result of the call as its result.

type (v)
Returns the type of its only argument, coded as a string. The possible results of this function are
"nil" (astring, not the value nil), "number", "string", "boolean", "table", "function", "thread",
and
"userdata".

6.1.31. User libraries

User libraries usually contain user defined functions which are later called from other scripts.

You have to include your library in the script with the following command:
require(‘user.test’)unless you have enabled Auto load library.

89

Secure the code

There is an option keep source available for user libraries. Once disabled, the code is compiled
in the binary form and can’t be seen for further editing. If this option is enabled, the source
code is seen in the editor.

Auto load library means that the library will be automatically loaded so you don’t have to use
require when writing scripts. Also this have to be checked if Block programming is used.

6.1.32. Common functions

Common functions contains library of globally used functions. They can be called from any
script, any time, without special including like with user libraries. Functions like sunrise/sunset,
Email are included by default in Common functions.

6.1.33. Start-up (init) script

Init script is used for initialization on specific system or bus values on system start. Init script is
run each time after system is restarted for some reason.

90

6.1.34. Tools

 Export helpers – export scripting helpers
 Import helpers – import scripting helpers
 Restore helpers – restore default scripting helpers
 Backup user scripts – backup all scripts in *.gz file
 Restore from archive – restore script from archive (*.gz) file with two

possibilities:
o Remove existing scripts and import from backup
o Append keeping existing (s) scripts

 Print script listings – shows all scripts with codes in list format sorted by
Categories.

91

 Show logs window – show logs in separate window
 Edit custom JavaScript

92

With custom JavaScripts it is possible to create different dynamic tasks, like detect short/long
press from visualization using one icon or we can open specific Floor/Plan when some grp
address is triggered - useful e.g. when you want IP Camera page automatically to be
opened when Intercom button is pressed:

$(function(){
 if (typeof objectStore !== 'undefined') {
 var id = Scada.encodeGroupAddress('1/1/2');

 objectStore.addListener(id, function(object, type) {
 if (type == 'value') {
 showPlan(69);
 }
 });
 }
});

See more examples here: http://forum.logicmachine.net/showthread.php?tid=275

6.2. Objects

List of KNX network objects appears in Objects menu. The object appears in the list by way of:

 sniffing the bus for telegrams from unknown group addresses (if enabled in Utilities)

 adding manually

 importing ESF file (in Utilities)

6.2.1. Object parameters

To change the settings for existing or new objects, press on the specific list entry.

http://forum.logicmachine.net/showthread.php?tid=275

93

 Object name – Name for the object
 Group address – Group address of this object
 Data type – KNX data type for the object. This has to be set once the LM sniffs the

new object for proper work.
 Units / suffix – units for the object which will appear on the visualization along with

the value
 Log – enable logging for this object. Logs will appear in Objects logs menu.
 High priority log – mark the object for high priority logging; when the log database is

cleared, first standard logs are cleared, only then high priority
 Export – Make object visible by remote XML requests and in BACnet network (if KNX

– BACnet gateway functionality is used)
 Poll interval (seconds) – perform automatic object read after some time interval
 Tags – assign this object to some tag which can be later used in writing scripts, for

example, All_lights_first_floor.
 Current value– Current value of the object
 Object comments – Comment for the object

There is a possibility to sort the objects by one of the following – Name, Group address, Data
type, Current value, Tags, Comments

6.2.2. RGB group object

A special RGB color data type is added in Data type list.

94

In Visulization Parameters you can do the following settings for the object:

Send after each color pick – specifies either to send the telegram automatically into KNX
bus once the color is selected in color picker.
Number of presets to show – count of predefined presets in color picker in Visualization
Preset 1..6 – preset color

95

When you add the object with RGB color data type in the Visualization, the color picker with
predefined colors appears.

96

6.2.3. Object visualization parameters

By pressing on the button of the corresponding object you can set specific visualization
parameters for this type of object.

1 bit

 Control type – type of the visual control element which will appear in Touch
Visualization

o Toggle
o Checkbox

4 bit (3 bit controlled)

 Step size – step size for object change, example for blinds control

1byte and 4byte float

 Control type – type of the visual control element

97

o Slider

 M
inimum
value –
minimum
value on the
slider

 M
aximum
value –
maximum
value on the
slider

 Step – step for one slider movement
 Vertical slider – special option for Usermode visualization
 Invert vertical slider – invert vertical slider so the maximum is on top

o Direct input / Step +/-

98

 Minimum value – minimum value on the control bar
 Maximum value – maximum value on the control bar
 Step – step for one position change

o Circular slider

 Minimum value – minimum value on the control bar
 Maximum value – maximum value on the control bar
 Step – step for one position change
 Slider color – color of slider
 Background color – background color of the slider
 Round line cap – make round ends of slider
 Hide title – hide title
 Hide min/max/step buttons – hide min, max and step buttons
 Line thickness – specify the thickness of slider line
 Size – Size in px of the control

99

o Custom value select – select from list of custom values. Custom values should be

defined in

 Show icons in Usermode – show icons instead of values for the object in
visualization. Icons should be defined in visualization constructor as
Additional Icons

100

6.2.4. Change the object state

In the object list, by pressing on the button, you can change the state of the object.
The appearance of the New value depends on what visualization parameters are set for specific
object.

6.2.5. Custom values

If special value naming is necessary, use this icon to set it up (only for Boolean and
Integer data types)

6.2.6. Object control bar

 Add new object – Manually add new object to the list
 Auto update enabled –Specifies either the object list is updated automatically or not
 Clear – Clear the list of group addresses
 Next/Previous page – move to next or previous page

101

 Refresh – refresh the object list
 Mass edit – mass edit objects by a specific criteria – object properties, visualization

parameters or custom values.

 Mass delete – delete mass object either by current Mass Edit filters or all unnamed
objects

There is also the following bar on the bottom of the configuration screen:

 CPU/IO –Load average. The load average represents the average system load over a
period of time. It conventionally appears in the form of three numbers which
represent the system load during the last one-, five-, and fifteen-minute periods.
The lower number the better.

Note! Inspect your running tasks if the load exceeds the level 0.70!

More on UNIX style load calculation can be found here:
http://en.wikipedia.org/wiki/Load_(computing)#Unix-style_load_calculation

 Memory – memory usage in %

http://en.wikipedia.org/wiki/Load_(computing)#Unix-style_load_calculation

102

 KNX/IP / KNX/TP – type of connection to KNX bus. If KNX/TP is set and it is not
available, there will be error notification

 Sync project data – save all project data to internal flash by pressing this button.
Otherwise the data is saved once in 30 minutes from RAM to Flash, or when Reboot
or Shutdown commands are sent

 KNX statistics graphs – shows average KNX bus load

6.2.7. Filter objects

On the left side of the object list there is filtering possible. To perform the filtering type the
name, group address, tag or specify the data type of the object and press on Filter button.

Match mode:
All tags – represents AND function when all tags should match
Any tag – represents OR function when any one of listed should match

103

6.3. Object logs

Object historical telegrams are available in Object logs. Once logging is enabled for object, all
it’s further history will be logged.

Filtering is available when there is a need to find specific period information

 Start date – start date and time for log filtering
 End date – start date and time for log filtering
 Name or group address – specific name or group address of object
 Tags – tag names
 Value – specific object value
 Source address – specific source address

You can clear all logs by pressing on Clear button.

Size of log is defined in Utilities General Configuration

104

6.3.1. Export logs

Example

Once an hour, make CSV file with all objects logs and send to external FTP server with IP
192.168.1.11, login ‘ftplogin‘, password ‘ftppassword‘.

 In Scripting -> Scheduled add the script which will run once an hour

 Add the following code in Script editor for this particular script.

1. require('socket.ftp')

2.

3. -- ftp file

4. ftpfile=string.format('ftp://ftplogin:ftppassword@192.168.1.11/%s.csv', os.date('%Y-%m-

%d_%H-%M'))

5. -- get past hour data (3600 seconds)

6. logtime=os.time() - 60*60

7.

8. -- list of objects by id

9. objects ={}

10.

11. -- objects with logging enabled

12. query ='SELECT address, datatype, name FROM objects WHERE disablelog=0'

13. for _, object in ipairs(db:getall(query)) do

14. objects[tonumber(object.address)]={

15. datatype=tonumber(object.datatype),

16. name =tostring(object.name or''),

17. }

18. end

105

19.

20. -- csv buffer

21. buffer ={'"date","address","name","value"'}

22.

23. -- get object logs

24. query='SELECT src, address, datahex, logtime, eventtype FROM objectlog WHERE logtime>=

? ORDER BY id DESC'

25. for _, row in ipairs(db:getall(query, logtime))do

26. object = objects[tonumber(row.address)]

27.

28. -- found matching object and event type is group write

29. if object and row.eventtype=='write' then

30. datatype=object.datatype

31.

32. -- check that object datatype is set

33. if datatype then

34. -- decode data

35. data =knxdatatype.decode(row.datahex, datatype)

36.

37. -- remove null chars from char/string datatype

38. if datatype==dt.char or datatype==dt.string then

39. data =data:gsub('%z+', '')

40. -- date to DD.MM.YYYY

41. elseifdatatype==dt.date then

42. data =string.format('%.2d.%.2d.%.2d', data.day, data.month, data.year)

43. -- time to HH:MM:SS

44. elseif datatype==dt.time then

45. data =string.format('%.2d:%.2d:%.2d', data.hour, data.minute, data.second)

46. end

47. else

48. data =''

49. end

50.

51. -- format csv row

52. logdate=os.date('%Y.%m.%d %H:%M:%S', row.logtime)

53. csv=string.format('%q,%q,%q,%q', logdate, knxlib.decodega(row.address), object.name,

tostring(data))

54.

55. -- add to buffer

56. table.insert(buffer, csv)

57. end

58. end

59.

60. -- upload to ftp only when there's data in buffer

61. if #buffer > 1 then

62. result, err =socket.ftp.put(ftpfile, table.concat(buffer, '\r\n'))

63. end

106

64.

65. -- error while uploading

66. if err then

67. alert('FTP upload failed: %s', err)

68. end

6.4. Schedulers

Schedulers contain administration of user mode schedulers. Schedulers allow for end user to
control KNX group address values based on the date or day of the week.

6.4.1. Add new scheduler

By clicking on the Schedulers Add new scheduler you will see such parameter window:

 Object – the object group address which will be controlled by scheduler
 Active – define this scheduler as active or not
 Name – name of the scheduler
 Start date – start date of the scheduler
 End date – end date of the scheduler

107

6.4.2. Scheduler events

Event can be added both in administrator interface as well as by end user in the special User
mode schedulers interface.

 Active – define the event active or not
 Value – value to send to the group address when the event will be triggered
 Start time – start time for the event
 Days of the week – days of the week when the event will be triggered.
 Hol– holidays which are defined in Holidays tab

6.4.3. Scheduler holidays

Once the event will be marked to run in Hol, Holiday entries will be activated.

108

 Name – the name of the holiday entry
 Date – date of the holiday

6.4.4. Direct link

To get direct link to a specific scheduler click on Direct link button on bottom left part.

6.5. Trend logs

Trends logs are administration of user mode trends, used to see historical object graphical
values, compare with other period values.

109

6.5.1. Add new trend log

 Object – choose from list of object the one to make trends for
 Name – name of the trend
 Log type [Counter, Counter with negative delta, Absolute value] – type of the log.

Counter type is used to count the date, Absolute value – saves the actual readings
 Trend resolutions [5 min .. 1 hour] – average value of 1 minute for specific time

interval data will be shown on the trend. E.g. if 1 hour – trend step will be 1 hour
with average 60 readings data

 Decimal places – decimal places for the presentation
 Daily data –average value of daily data for specific time interval

Note! One trend data point reading takes 8bytes of flash memory. E.g. reading some
value once in every 10 minutes, will consume ~0.4MB of flash each year.

6.5.2. Direct link

To get direct link to a specific trend log click on Direct link button on bottom left part.

110

6.5.3. Trend logs functions

To process logged information in trends, you can use built in trend log functions from scripting.

Include library before calling trend log functions:

require('trends')

Include library before calling trend log functions

trends.fetch(name, dates, resolution)
trends.fetchone(name, dates, resolution)

Fetch one or many values for the given period

Parameters:

 name trend log name, required

 dates Lua table with two items - 'start' and 'end', each item must contain 'year', 'month',
'day' keys, required

 resolution optional, will use trend resolution if not specified, set to 86400 for retreive
daily data

Return values:

 fetch returns Lua table with values for the given period or nil on error. Number of values
depends on period, resolution and data retention settings

 fetchone returns single value for the given period or nil on error

Example:

require('trends')

-- will fetch data between 2016.04.15 00:00 and 2016.04.16 00:00
dates = {
 ['start'] = { year = 2016, month = 4, day = 15 },
 ['end'] = { year = 2016, month = 4, day = 16 },
}

-- fetch current value
day = trends.fetchone('Gas', dates)

-- get data for the past year
dates = {}
dates['start'] = os.date('*t')
dates['start'].year = dates['start'].year - 1
dates['end'] = os.date('*t')

-- fetch previous value
yearly = trends.fetch('Gas', dates, 86400)

 trends.NaN value is used for points which contain invalid values or cannot be found.
The default value is 0, but it can also be set to 0 / 0 (NaN - not a number).

111

Example:

require('trends')

-- use "not a number" for invalid values
trends.NaN = 0 / 0

-- get data for the past year
dates = {}
dates['start'] = os.date('*t')
dates['start'].year = dates['start'].year - 1
dates['end'] = os.date('*t')

value = trends.fetchone('Hot Water', dates)

-- NaN ~= NaN, means value was not found
if value ~= value then
 return
end

6.6. Visualization structure

In Vis.structure menu the structure of the visualization is defined and visualization backgrounds
are uploaded.

6.6.1. Levels / Plans

By default there is Main level added. To add a new level/building, press “Add new level” button.
Please note that you can limit access to this specific level by adding PIN code.

112

You can also add a new level by importing it from the file (which is exported on other LM for
example). Press Import button for this purpose. Object linkage can be either cleared or
imported as-is.

Once a new level is added, you can add second level or upload floor pictures related to this

particular building. To add a new entry, click on the green icon , to delete a specific entry

press on the red icon .

When adding new plan, the following parameters should be defined:

113

 Parent – name of parent level
 Name – name for the plan
 Plan size – plan size in pixels. There are predefined resolutions available when

clicking on the icon on the right size of this parameter:

 Layout – layout for this specific plan. All object from Layout will be duplicated on this
particular plan including background color and plan image if they are not defined
separately for this specific plan

 Usermode visualization [Show, Show and make default, Hide] – visibility for this
particular plan in Usermode visualization

 Touch visualization [Show, Show and make default, Hide]– visibility for this
particular plan in Touch visualization

114

 PIN code – specify PIN code to access the plan
 Primary background image – choose primary background image from the list added

in Vis.graphics Images/Backgrounds
 Secondary background image – choose secondary background image from the list

added in Vis.graphics Images/Backgrounds
 Background color – choose background color of the plan
 Touch background color – define a color for touch visualization
 Repeat background image – either to show the image once or repeat it and fill the

whole plan
 Fixed primary background – specify if first background image should be fixed. By

enabling this, you can enable Parallax effect for your visualization
 Admin only access – enable admin only access for this floor

When clicking on Background image, the following window appears with background images
which has to be added in Vis.graphics Images/Backgroundsin advance:

You can duplicate the plan with all its objects and settings by pressing on icon.
Levels can be sorted by pressing and icons. You can export the plan structure by clicking

in this icon

6.6.2. Layouts / Widgets

Layouts are used as templates for further use when adding Levels in Levels/Plans tab.

115

Layouts will not be visible from the Usermode/Touch visualizations. When you add any
background, objects to layouts level in Visualization, they will automatically appear on all linked
Levels.

 Parent – name of parent layout
 Name – name for the layout
 Plan size – plan size in pixels. There are predefined resolutions available when

clicking on the icon on the right size of this parameter
 Primary background image – choose primary background image from the list added

in Vis.graphics Images/Backgrounds
 Secondary background image – choose secondary background image from the list

added in Vis.graphics Images/Backgrounds
 Background color – choose background color of the plan
 Touch background color – define a color for touch visualization
 Repeat background image – either to show the image once or repeat it and fill the

whole plan
 Fixed primary background – specify if first background image should be fixed. By

enabling this, you can enable Parallax effect for your visualization

Widgets are used to combine several objects under one object in visualization.
Background image for the widget should be added in Vis.graphics Images/Backgrounds in
advance.

116

 Parent – name of parent widget
 Name – name for the widget
 Plan size – plan size in pixels. There are predefined resolutions available when

clicking on the icon on the right size of this parameter
 Widget position – default position of the widget on the screen
 Primary background image – choose primary background image from the list added

in Vis.graphics Images/Backgrounds
 Background color – choose background color of the widget
 Touch background color – define a color for touch visualization
 Repeat background image – either to show the image once or repeat it and fill the

whole plan
 Fixed primary background – specify if first background image should be fixed. By

enabling this, you can enable Parallax effect for your visualization

When you have defined the widget in Layouts/Widgets tab, you can add objects to it in
Visualization tab.

117

When you have added necessary objects to the widget, you can choose it when adding objects
for main Levels e.g. Bedroom in Main level.

118

Once added, you can try out the widget in Usermode visualization by clicking on added object
(temperature sensor icon on the left), the widget appears on click.

6.7. Visualization

After the building and floor structure is defined in Vis.structure tab, it is visualized in
Visualization tab. Controlled and monitored objects can be added and managed in this section.

Both side bars can be minimized by pressing on icon making the map more visible especially
on small displays.

6.7.1. Plan editor

Plan editor is located on the right side of the visualization map. By clicking on Unlock current
plan for editing button, the following main menus appear for configuration:

 Object – new object to be added to the map
 Link – linking several floors with special icons
 Text Label – text label to put on visualization

119

 Image – Add specific image on the visualization
 Frame – add frame object to the visualization
 Gauge – Metering gauge
 Camera – IP web camera integration into visualization
 Graph – Real-time graph to monitor value of scale-type objects

While in editing mode, on the left side you can change plan resolution on the fly

When some object is selected and in the editing mode, there appears Delete / Duplicate
buttons so you can either delete or copy the object

6.7.2. Object

 Main object – list of existing group addresses on KNX/EIB bus, the ones available for
configuration in Objects tab

 Status object – list of status objects on KNX/EIB bus
 Custom name – Name for the object
 Read-only – the object is read-only, no write permission
 Hide in touch– do not show this object in Touch Visualization
 Hide background– Hide icon background
 Send fixed value– Allows to send specific value to the bus each time the object is

pressed
 No bus write – do not send telegram into the bus once clicked on this object in

Usermode/Touch visualizations
 PIN code – PIN code which will be asked to provide when click on this object to perform

group write
 Widget – specify widget which will be launched when click on this object
 Display mode [icon and value; icon; value] – how to display the object
 Touch icon – icon for Touch visualization
 On icon – On state icon for binary-type objects. Icons library is located in Vis.graphics

Icons tab
 Off icon –Off state icon for binary-type objects. Icons library is located in Vis.graphics

Icons tab
 Additional classes – additional CSS classes for the element
 Show control –scale-type object specific setting

defining either to show the control in Usermode
visualization without icon

120

For scale-type objects additional button appears while specifying parameters – Additional icons.
It’s possible to define different icons for different object values in the window.

121

On the bottom of setting you can see element position and size parameters, which you can

freely change. By pressing you will reset size. By pressing you can lock aspect ratio.

Once the object parameters are defined, press Add to plan button and newly created object will
appear. You can move the object to the location it will be located. Note that while being in
editing mode, the object will not work. When all necessary objects are added, press Save and
reload plan button so the objects starts functioning.

You can edit each added object when clicking on it while in Editing mode.

6.7.3. Link

In order to make visualization more convenient, there are floor links integrated. You can add
icons or text on the map, which links to other floors.

 Link to – Linked plan name or link to Schedulers / Trends or External Link (use the
link in form http://www.openrb.com)

 Custom name – name for the link
 Hide in touch – do not show this object in Touch Visualization
 Hide background– Hide icon background
 Display mode [Icon; Value] – either to show icon or its value
 Icon – Icon which will be showed in visualization (if chosen, no further parameters

are available)

122

 Active state icon – active state icon if the link is to current plan (in case you have
several smaller plans on one visualization and want to display the current one)

 Additional classes – additional CSS classes for the element

Once the floor link parameters are defined, press Add to plan button and newly created object
will appear. You can move the object to the location it will be located. Note that while being in
editing mode, the object will not work. Press on Save and reload plan button so the objects
starts functioning.

6.7.4. Text Label

Text labels can be added and moved across the visualization map.

 Text – label text
 Font size – label font size
 Text style – style of the text – bold, italic, underscored
 Custom font – font name
 Font color– label font color
 Additional classes – additional CSS classes for the element

Once the label parameters are defined, press Add to plan button and newly created object will
appear on the map. You can move the object to the location it will be located. Press on Save
and reload plan button so the objects starts functioning.

123

6.7.5. Image

Image section allows adding images from the internet into the visualization map. Useful for
example, to grab dynamic weather cast images.

 Image source [Local; Remote] – image source location
 Source url / Select image – Source URL of the image or image from local database
 Image size – width and height of the image
 External link – external link URL when pressing on the image
 Additional classes – additional CSS classes for the element

Once the image parameters are defined, press Add to plan button and newly created object will
appear on the map. You can move the object to the location it will be located. Press on Save
and reload plan button so the objects starts functioning.

6.7.6. Frame

With Frame functionality you can integrate 3rd party applications, we resources or local
Trends/Schedulers into one common visualization.

 Source [Url, Schedulers; Trend logs] – frame source
 Url – Source URL of the page to integrate
 Frame size – width and height of the frame
 Custom name – custom name of the frame object
 External link – external link URL when pressing on the image
 Hide in Touch – defines either to hide frame in Touch visualization

124

 Additional classes – additional CSS classes for the element

125

6.7.7. Gauge

Gauge allows visualizing and changing object value in the gauge.

 Data object – KNX group address
 Gauge size – size of the gauge
 Custom name – custom name for the object
 Read only – make the gauge read only
 Additional classes – additional CSS classes for the element

Once the gauge parameters are defined, press Add to plan button and newly created object will
appear on the map. You can move the object to the location it will be located. Press on Save
and reload plan button so the objects starts functioning.

6.7.8. Camera

LogicMachine supports third party IP web camera integration into its visualization.

126

 Source url – source address of the video stream
 Window size – size of the window of camera picture
 Custom name – name for the object
 Icon – icon for the object
 Auto open window – automatically open video window, otherwise it is launched by

click on the icon
 Hide background– hide icon background
 Additional classes – additional CSS classes for the element

Note! If IP camera requires user name and password, enter the url in form
http://USER:PASSWORD@IP

Once the camera parameters are defined, press Add to plan button and newly created object
will appear in look of video camera. You can move the object to the location it will be located.
Note that while being in editing mode, the object will not work. Press on Save and reload plan
button so the objects starts functioning. By pressing on video camera, a new sub-window
appears with a picture from your IP web camera. The window can be freely moved to other
location so not to cover other visualization objects.

127

6.7.9. Graph

Real-time graphs can be integrated into visualization system to monitor the current and old
value of scale-type objects. Make sure logging is enabled for the object in Object tab which
values is planned to be shown in the graph.

 Data object – group address of the object
 Custom name – name of the object
 Icon– icon to launch the graph
 Windows size – size of the graph window

128

 Number of points – number of data points to show in the graph
 Auto open window – graph window is automatically opened
 Hide background – hide icon background
 Additional classes – additional CSS classes for the element

Once the graph parameters are defined, press Add to plan button and newly created object will
appear. You can move the object to the location it will be located. Note that while being in
editing mode, the object will not work. Press on Save and reload plan button so the objects
starts functioning.

129

6.8. Vis.graphics

 The list of predefined icons, list of images and backgrounds is available in Vis.graphics tab.

Press on Add icons button to add a new entry. The system accepts any size icons. GIF is also
supported.

 Name (optional) – the name of the icon
 File – Icon file location

Images/Backgrounds tab is used to upload image files for visualization purposes

130

In Fonts tab you can add custom fonts

In Custom CSS tab you can add your CSS style for the visualization which you can use when
adding elements into visualization, so any elements of Look and Feel is customizable with this
solution.

131

6.9. Utilities

There are following utilities in the tab available:

Import ESF file– imports ETS object file. It will be necessary to set correct data types for
some imported objects. Existing objects will not be overwritten. Objects with the same
name are considered duplicates and might not be imported

Import neighbours – import list of objects from network LM devices

Reset / clean-up – delete all objects from the Logic Machine, they disappear from
visualization aswell

132

Factory reset– delete all configuration and return to factory defaults

Date and time – data and time settings

Install updates – install LogicMachine update file *.lmu. LogicMachine will reboot after
successful update

Backup – backup all objects, logs, scripts, visualization.

Restore– restore configuration from backup

133

General Configuration – system general settings

 Interface language – interface language
 Automatic address range start – start group address when using automatic

addressing in scripts, IO settings and other
 Discover new objects– either KNX object sniffer is enabled. If yes, once

triggered all new objects will appear automatically in the Objects list
 Object log size – max count of object logs
 Default log policy– either to log status change for all objects or only for

checked objects
 Alert log size – max count of alerts logged
 Log size – max count of logs
 Error log size – max count of errors logged
 Enable block editor – either to enable scripting block editor
 Save object values in storage – save object values in REDIS database to access

from apps
 Code editor tab size – specify tab size to be used in the scripting editor

Note! If log size is changed to a smaller value, excess logs will be deleted on next auto clean-up
(every 10 minutes)

Note! Log policy only affects new objects, current per-object log settings are kept unchanged

Warning! Excessive object logging degrades LogicMachine performance. Please follow this
example to store logs on local FTP or automatically export to external FTP server:

134

http://openrb.com/example-export-last-hour-csv-object-log-file-to-external-ftp-server-from-
lm2/

Vis. Configuration – visualization specific settings

 Usermode sidebar [Show docked, Show as overlay (auto-hide), Hide
(fullscreen mode] – visibility of sidebar when in Usermode Visualization

 Usermode view [Align plans to top left, no size limit; Center plans, limit
size; Center plans, enable auto-sizing; Center horizontally, auto-size
width] – defines the look of Usermode visualization

 Usermode page transition [Flip X; Flip Y; Shrink; Expand; Slide up; Slide
down, Slide left; Slide right; Slide up big; Slide down big; Slide left big;
Slide right big] – transition when changing plans in visualization

 Usermode auto-size upscaling – enable this to scale the visualization
automatically on each display device. Please note to use SVG format
images and icons so the quality is not affected by upscaling

 Usermode background color – background color in usermode
visualization

 Usermode background image – specific image for usermode visualization
 Custom font – select custom font to use in visualization
 Use dark theme – check to enable dark theme in both usermode and

touch visualizations
 Enable swipe gesture – check to enable swipe gesture to move across

plans from your touch device
 Disable object click animation – disable object click animation
 Dim inactive visualization after – define time in minutes after which the

screen will be dimmed where visualization is opened

http://openrb.com/example-export-last-hour-csv-object-log-file-to-external-ftp-server-from-lm2/
http://openrb.com/example-export-last-hour-csv-object-log-file-to-external-ftp-server-from-lm2/

135

 Dim level – dim level for the display
 Show alerts in Usermode – once new Alerts is triggered it will pop-up in

User mode visualization

System – by clicking on the arrow near System button, KNX Connection, User Access, Remote
Services settings can be access. By clicking on the System button, network configuration
window opens in new browser’s tab.

6.10. User access

User access management is located in User access tab.

User access settings

136

 Disable password for Visualization – disable password access for visualization
 Enable password for Apps – enable password to enter the initial Apps screen of

LogicMachine (when entering http://IP in the web-browser)
 Enable password for User directory – enable password access for User directory
 Visualization PIN code – global PIN code visualization

User directory

You can upload files which are accessible through the main web server via FTP. In System config
--> Services --> FTP server you have to enable the FTP server and set password for apps user.
Then you can upload files into user directory which can then be accessed at http://IP/user.
Password authentication for this directory can be enabled/disabled in Logic Machine --> User
access --> User access settings.

Adding users

 Name – name of the user

http://ip/

137

 Login – login name
 Password – password
 Repeat password – repeat password
 Visualization access [None, Partial, Full] – type of Visualization access
 Schedulers access [None, Partial, Full] – type of Schedulers access
 Trends access [None, Partial, Full] – type of Trends access

 None – access is limited
 Partial – access is granted for specific visualization floors, schedulers and
trends
 Full – full access

Access logs

Shows a list of access logs

6.11. Alerts

In Alert tab a list of alert messages defined with alert function in scripts is located. The
messages are stored on the compact flash. Information on system start and KNX connection
status messages are also automatically displayed in this window.

138

On the communication panel you can jump by pages
and reload the page.

Example

1. temperature = 25.3

2.

3. if temperature > 24 then

4. -- resulting message: 'Temperature levels are too high: 25.3'

5. alert('Temperature level is too high: %.1f', temperature)

6. end

6.12. Error log

Error messages from scripts are displayed in Error log tab.

6.13. Logs

Logs can be used for scripting code debugging. The log messages appear defined by log
function.

139

140

7. User mode visualization

User mode visualization contains created visualization maps. A password and users to access
specific visualization maps can be created in Logic Machine --> User access

141

7.1. Custom design Usermode visualization

Through Custom CSS styles it is possible to create different type of visualization maps. Custom
CSS can be done in Vis. Graphics Edit custom CSS tab. For more information of CSS examples
please see our user forum: http://forum.logicmachine.net/

http://forum.logicmachine.net/

142

8. Touch visualization

Touch visualization is designed for iPhone/iPod/iPad/Android touch screen devices. All objects
which are added in Logic Machine configuration by default are visible in touch visualization (if
there is no Hide in touch option enabled).

The main window is Building view where you can choose which Floor from which Building to
control. Once you choose the floor, all objects which are assigned to it, are listed and can be
controlled.

Launching visualization on touch device (iPad in this case)

 Make sure your iPad is connected wirelessly to the LogicMachine (either through
separate access point or directly to Logic Machine’s USB WiFi adapter).

 In the browser enter Logic Machine’s IP (default 192.168.0.10).

 Click on the Touch Visualization icon.

 Save the application as permanent/shortcut in your iPad

143

9. System configuration

System configuration allows managing router functionality on KNX/EIB LogicMachine as well as
do access control management, upgrade firmware, see network and system status and others.

Login Password

admin admin

9.1. Hostname

Hostname can be change in System Hostname. This name will appear when searching for the
device through Zeroconf or Discovery applications.

144

9.2. Changing Admin password

The admin password configuration window is located in System Admin access.

9.3. Packages

System Packages shows the packages installed in the system. You can add new packaged by
pressing on +

9.4. Upgrade firmware

System Upgrade firmware is used to do a full upgrade of the system (both OS part as well as
LogicMachine part).

145

9.5. Reboot Logic Machine

You can restart the LogicMachine by executing System Reboot command.

9.6. Shutdown Logic Machine

You can shutdown the LogicMachine by executing System Shutdown command. It is advisable
to shutdown the system before plug out the power, because the database is saved safely.

9.7. Interface configuration

Ethernet interface is listed in the first tab. There are possibilities to disable/enable or to take a
look at the traffic flow graph using special icons on the right side.

By clicking on the interface you get to the configuration.

146

 Protocol– specific protocol used for addressing
 Static IP – static IP address. By default 192.168.0.10

 DHCP – use DHCP protocol to get IP configuration.
 Current IP– the IP address got from DHCP server. This field appears only if the IP

address is given otherwise it’s hidden.

 Network mask – network mask. By default 255.255.255.0 (/24)
 Gateway IP – gateway IP address
 DNS server – DNS server IP address
 MTU– maximum transmission unit, the largest size of the packet which could be passed

in the communication protocol. By default 1500

Ethernet interface data throughput graph

On the main window of the Ethernets tab, if you click on the button, a new window is
opened. It draws a real-time graph of the traffic flow passing the interface (both In and Out).
There is a possibility to switch the units of measurement – bytes/s or bytes/s.

147

9.8. KNX connection

KNX specific configuration is located in Network KNX connection window.

General tab

148

 Mode [TP-UART / EIBnet IP Tunneling / EIBnet IP Tunneling(NAT mode) / EIBnet IP
Routing] – KNX connection mode. LogicMachine5 has TPUART interface by default built-
in. Note! If there is no KNX TP connected to the device, it will automatically offer to
switch to KNXnet/IP mode.

 ACK all group telegrams – acknowledge receipt of telegram to all group communication
 KNX address – KNX physical address of the device
 KNX IP features – Use this device with KNX IP features e.g. for KNX device configuration

from ETS using LogicMachine
 Multicast IP – multicast IP address
 Multicast TTL – Time to live for multicast telegram in seconds
 Maximum telegrams in queue – count of maximum telegrams in the queue
 TOS priority level (0=no priority) – type of service in the telegram. See more here:

https://en.wikipedia.org/wiki/Type_of_service
 Encryption key – key for secure IP communication along LogicMachines. Setting

Encryption key will enable encryption of routing telegrams. Reception of normal
telegrams will still work. Tunneling and non-secure routing is disabled if only secure
communication is enabled. All devices must have the same date/time set otherwise
encrypted telegrams will be rejected.

 Enable only secure communication – define either only encrypted communication is
accepted

IP > TP filter

Filtering table for telegrams going from IP network to KNX TP1 is located in this submenu.

https://en.wikipedia.org/wiki/Type_of_service

149

 Apply filter to tunneling – either to apply filter policy to telegrams in tunneling
mode. If ETS is used it is recommended to turn this feature off.

 SRC policy [No filter / Accept selected individual addresses / Drop selected individual
addresses]– policy to apply to the list of source addresses

 Ind. address list – list of individual addresses. One address/range per line. Use * (e.g.
1.1.*) to filter all addresses in the given line.

 DST group policy[No filter / Accept selected group addresses / Drop selected group
addresses]– policy to apply to the list of destination group addresses

 Group address list – list of group addresses. One address/range per line. Use * (e.g.
1/1/*) to filter all addresses in the given line.

Note! KNX IP features should be on for filter to work. Filtering lists are updated at
once, changing policies requires restart.

Note that group address list can be filled automatically by checking necessary group

addresses in LogicMachine Objects list

150

TP > IP filter

Filtering table for telegrams going from KNX TP1 to IP network is located in this submenu.

 Apply filter to virtual objects – either to apply filter policy to objects added in
Objects tab as virtual objects without attraction to bus

151

 SRC policy [No filter / Accept selected individual addresses / Drop selected individual
addresses]– policy to apply to the list of source individual addresses

 Ind. address list – list of individual addresses. One address/range per line. Use * (e.g.
1.1.*) to filter all addresses in the given line.

 DST group policy [No filter / Accept selected group addresses / Drop selected group
addresses]– policy to apply to the list of destination group addresses

 Group address list – list of group addresses. One address/range per line. Use * (e.g.
1/1/*) to filter all addresses in the given line.

Note! KNX IP features should be on for filter to work. Filtering lists are updated at
once, changing policies requires restart.

9.9. KNX statistics

KNX related statistics can be found in Network KNX statistics menu.

9.10. BACnet settings

BACnet server specific configuration can be done in Network BACnet Settings

152

Server enabled – specify if BACnet server is enabled or not
Device ID – device ID in BACnet network
Password – device password
Object priority – object priority
Add group address to object name – add automatically the address to object name
Port – port number
BBMD IP – BACnet router IP. When router IP and port are set, LM will act as a foreign
device and will attempt to register with BACnet router.
BBMD port – BACnet router port. When router IP and port are set, LM will act as a foreign
device and will attempt to register with BACnett router
BBMD lease time (seconds) – registration resend interval

To make KNX/EIB objects BACnet readable/writable, mark necessary objects in LogicMachine as
“Export object”. Binary objects will appear as Binary Values, other numeric values will appear as
Analog Values. Other types are not currently supported. KNX bus write changes priority array
value at configured object priority index

153

9.11. BACnet objects

In Network BACnet objects you can see marked objects on LogicMachine which are sent to
BACnet network.

154

9.12. HTTP server

In case additional www ports are needed to run the web-server on, use Network HTTP server
menu. Default HTTP port is 80, default HTTPS port is 443.

9.13. FTP server

You can enable access to FTP server of LogicMachine by enabling this service in Service FTP
Server.

 Server status – define either FTP server is enabled or disabled
 Port – port of the service
 Username – login name, ftp

 Password – password for user ftp, length 4-20 symbols

155

 Username – login name to user directory http://IP/user, apps user. You can enable

or disable password authorization for this directory in Logic Machine User access
 User access settings

 Password – password for user apps, length 4-20 symbols
 Passive mode min port – FTP passive mode minimum port
 Passive mode max port – FTP passive mode maximum port

9.14. Remote services

 Service status – define either remote services are enabled or disabled
 Username – user name
 Password – password

URL

Change the IP and password according to your LM settings

http://remote:remote@192.168.0.10/scada-remote?m=rss&r=alerts

Request parameters

m set the return value format

 json

 xml

 rss only for alerts and errors

r requested function name

 alerts newest 50 alerts

Return values:

o alert alert text

o time alert time (UNIX timestamp)

http://ip/user

156

o date alert time (RFC date)

 errors newest 50 errors

Return values:

o error error text

o script error script name

o time error time (UNIX timestamp)

o date error time (RFC date)

 objects list of objects marked for export, ordered by update time

Return values:

o address object address (e.g. "1/1/1")

o name object name (e.g. "My object")

o data decoded object value (e.g 42 or "01.01.2012")

o datatype object datatype (e.g. 1 or 5.001)

o time object update time (UNIX timestamp)

o date object update time (RFC date)

o comment object comment (e.g. "Second floor entry lights")

o tags optional array of object tags (e.g. "Light", "Second floor")

 grp execute one of grp functions

Parameters:

o fn function name, required

 getvalue returns current object value if found

 find return object info

 write send KNX bus group write telegram

 response send KNX bus group response telegram

 read send KNX bus group read telegram

 update update local LM object value without KNX bus group write

o alias group address or name, required

157

o value new value to write, required for write / response / update, except for time and

date datatypes

Parameters for time datatype:

 day number (0-7), day of the week, optional

 hour number (0-23)

 minute number (0-59)

 second number (0-59)

Parameters for date datatype:

 day number (1-31)

 month number (1-12)

 year number (1990-2089)

o datatype optional for write / response / update, data type is taken from

the database if not specified

Possible values:

bool bit2 bit4 char uint8 int8 uint16 int16 float16

time date uint32 int32 float32 access string

Examples

Write value of 50 to 1/1/1

http://remote:remote@192.168.0.10/scada-
remote?m=json&r=grp&fn=write&alias=1/1/1&value=50

Write boolean value to 1/1/2 , you can use true or false , as well as 1 or 0

http://remote:remote@192.168.0.10/scada-
remote?m=json&r=grp&fn=write&alias=1/1/2&value=true

Explicit datatype setting to scale , send 50 to 1/1/1

http://remote:remote@192.168.0.10/scada-
remote?m=json&r=grp&fn=write&alias=1/1/1&value=50&datatype=scale

9.15. System monitoring

System monitoring is used to monitor system processes, hardware. In case of failure, the
system will be rebooted or specific task restarted.

http://remote:remote@192.168.0.10/scada-remote?m=json&r=grp&fn=write&alias=1/1/1&value=50
http://remote:remote@192.168.0.10/scada-remote?m=json&r=grp&fn=write&alias=1/1/1&value=50
http://remote:remote@192.168.0.10/scada-remote?m=json&r=grp&fn=write&alias=1/1/2&value=true
http://remote:remote@192.168.0.10/scada-remote?m=json&r=grp&fn=write&alias=1/1/2&value=true
http://remote:remote@192.168.0.10/scada-remote?m=json&r=grp&fn=write&alias=1/1/1&value=50&datatype=scale
http://remote:remote@192.168.0.10/scada-remote?m=json&r=grp&fn=write&alias=1/1/1&value=50&datatype=scale

158

9.16. Remote diagnostics

Remote diagnostics should be enabled only when there is remote Embedded Systems support
necessary for the device. It enables SSH access to the device.

 Service status – define either remote SSH access is enabled or disabled.

9.17. NTP client

NTP servers can be specified in Service NTP client window.

159

9.18. System status

General system status with CPU usage, Memory usage, Partition, Serial ports information can
be seen in Status System status window.

160

9.19. Network utilities

Ping and Traceroute utilities are located in Status Network utilities window. Both IP address
and DNS names are accepted.

9.20. System log

Operating system log is available in Status System log.

161

9.21. Running processes

System running processes can be seen in Status Running processes window.

162

10. User mode schedulers

User mode schedulers contains user-friendly interface for end-user to manage scheduler tasks,
for example, specify thermostat values depending of the day of the week, time and holidays.

10.1. Events

Each scheduler is mapped to specific group address in administration panel (see section 1.4 of
this manual).

When adding the new task for specific scheduler you can specify day of the week, start time,
value to send to the object.

163

10.2. Holidays

In Holidays special days are specified which are then used adding new events.

Click on Add new holiday button to specify a holiday.

164

11. Trend logs

Trend logs are end user interface for trends (defined in administrator interface in section 1.5).

By clicking on the menu button you can change to different trends where each is mapped
to a specific KNX group address.

 Day – Trend with Day view
 Month – Trend with Month view
 Year – Trend with year view
 Current – Current trend is drawn in blue, you can choose either to show Day,

Month or Year view
 Previous – previous time period, you can choose either to show Day, Month or

Year view

165

 Show previous – when enabled a yellow trend line appears showing Previous
trend above Current trend

 Single trend – view single trend
 Multiple trends – view multiple trends. When this mode is chosen, you can select

several object on the left side to be shown

By clicking on Data button, data points will be shown in a way of table which can be later
exported as CSV file.

166

167

12. Modbus RTU/TCP interconnection with LM

Modbus TCP support is added by installing a special package through Sys config System
Packages. Modbus TCP is supported over Ethernet port. Modbus communication is done either
from visual Modbus mapper for Modbus Master or through scripts for Modbus Slave.

Modbus Master – user graphical mapper interface in Modbus tab
Modbus Slave – to use LM as Modbus Slave, disable Modbus RTU in ModbusRTU settings,
and use scripts for the communication

12.1. Modbus device profile

First thing you should do is to define Modbus device profile – it is a *.json file with the following
structure e.g. a fragment from UIO20 device by Embedded Systems:

{
"manufacturer": "Embedded Systems",
"description": "Universal 16+4 I/O module",
"mapping": [
{ "name": "Output 1", "bus_datatype": "bool", "type": "coil", "address": 0, "writable": 1 },
{ "name": "Input 1", "bus_datatype": "float16", "type": "inputregister", "address": 0, "value_multiplier": 0.001, "units": "V" }
]
}

Name – Object name, e.g. Output 2 (String, Required)
Bus_datatype - KNX object data type, key from dt table, e.g. float32 (String/Number,
Required)
Type – Modbus register type, possible values: coil discreteinput register inputregister
(String, Required)
Address – Register address (0-based) (Number, Required)
Writable - Set to true to enable writing to register if type is either coil or register
(Boolean)
Datatype – Modbus value data type. If set, conversion will be done automatically.
Possible values: uint16 int16 float16 uint32 int32 float32 uint64 int64 quad10k s10k
(String)
Value_delta – New value is sent when the difference between previously sent value and
current value is larger than delta. Defaults to 0 (send after each read) (Number)

168

Value_multiplier – Multiply resulting value by the specified number, value = value_base
+ value * value_multiplier (Number)
Value_bitmask – Bit mask to apply, shifting is done automatically based on least
significant 1 found in the mask (Number)
Value_nan – Array of 16-bit integers. If specified and read operation returns the same
array no further processing of value is done (Array)
Value_conv – Apply one of built-in conversion functions (String, Internal)
Value_custom – Name of a built-in enumeration or a list of key -> value mapping,
resulting value will be 0 if key is not found (String/Object)
Internal – Not visible to user when set to true, should be used for scale registers
(Boolean)
Units – KNX object units/suffix (String)
Address_scale – Address of register containing value scale, value = value * 10 ^ scale
(Number)
Read_count – Number of register to read at once (for devices that only support reading
of a specific block of registers) (Number)
Read_swap – Swap register order during conversion (endianness) (Boolean)
Read_offset – Position of first register of data from the block of registers (0-based)
(Number)

When the Modbus device profile file is created, upload it by clicking on Profiles button.

169

12.2. Reading ModBus RTU coil / register from the interface

As creating new Modbus profiles is not the most user-friendly task, we have added a new
feature that allows reading any Modbus coil or register straight from the user interface. This
should help users to find correct settings and addresses before creating new profiles. For now it
only works with RTU connection, TCP is planned to be implemented later.
By pressing RTU read test button you get the following options:

 Device address – ModBus device address
 Function (Coil, Discrete input, Holding register, Input register) – ModBus function
 Address – address where data is located
 Data type – data type, can be chosen only for registers
 Read swap (None (ABCD); Word (CDAB); Byte (BADC); Byte and word (DCBA) – read

data swapped in chosen way
 Read length – read length of registers/coils

12.3. RTU Scan

Scan RS-485 ports for connected ModBus RTU devices. Only devices that are not already

present and have a valid profile will be added. Operation will finish once the whole range has

been scanned or 30 seconds have elapsed

170

 Scan range start – start ModBus device address

 Scan range end – end ModBus device address

12.4. RTU settings

 RTU (serial) enabled – defines either Modbus RTU is enabled

 Port (/dev/RS485-1; /dev/RS485-2) – specify the port to communicate or leave blank for

automatic detection.

 Baud rate (1200 .. 500000) – baud rate

 Parity (None 1 stop bit; Odd, Even, None 2 stop bits) – parity

 Duplex – define either half or full duplex communication

171

12.5. Adding Modbus device

Once profiles are added, add Modbus device by clicking Add device button.

 Connection type – define either it is Modbus RTU or Modbus TCP connection
 Name – name of the device
 Profile – profile of the device
 Device address – device address
 Poll interval (seconds) – interval to poll the device
 IP – IP address of the device in case Modbus TCP is used
 Port – Communication port of the device in case Modbus TCP is used

Once the device is added, you can do mapping to KNX addresses by clicking on icon. First,
you see a list of all objects on the Modbus device.

Click on specific object to do mapping.

172

12.6. Program address for UIO20 Modbus device

There is a separate Write address button to program address for UIO20 device. Press
programming button and click save afterwards. Programming LED will turn off after successful
write operation.

Once script is added, you can add the code in the Script Editor. There are lots of predefined
code blocks in the Helpers.

12.7. Modbus Slave examples

Add the following code to Common functions

1. -- modbus proxy

2. mbproxy ={

3. -- supported function list

4. functions ={

5. 'readdo',

6. 'readcoils',

7. 'readdi',

8. 'readdiscreteinputs',

9. 'readao',

10. 'readregisters',

11. 'readai',

12. 'readinputregisters',

173

13. 'writebits',

14. 'writemultiplebits',

15. 'writeregisters',

16. 'writemultipleregisters',

17. 'reportslaveid',

18. 'getcoils',

19. 'getdiscreteinputs',

20. 'getinputregisters',

21. 'getregisters',

22. 'setcoils',

23. 'setdiscreteinputs',

24. 'setinputregisters',

25. 'setregisters',

26. },

27. -- new connecton init

28. new =function()

29. require('rpc')

30. local mb =setmetatable({}, { __index = mbproxy })

31.

32. mb.slaveid =0

33. mb.rpc = rpc.client('127.0.0.1', 28002, 'mbproxy')

34.

35. for _, fn in ipairs(mbproxy.functions)do

36. mb[fn]=function(self, ...)

37. return mb:request(fn, ...)

38. end

39. end

40.

41. return mb

42. end

43. }

44.

45. -- set local slave id

46. function mbproxy:setslave(slaveid)

47. self.slaveid = slaveid

48. end

49.

50. -- send rpc request for a spefic function

51. function mbproxy:request(fn, ...)

52. local res, err = self.rpc:request({

53. fn = fn,

54. params ={ ... },

55. slaveid = self.slaveid or0,

56. })

57.

58. -- request error

59. if err then

60. return nil, err

174

61. -- request ok

62. else

63. -- reply with an error

64. if res[1]==nil then

65. return nil, res[2]

66. -- normal reply

67. else

68. return unpack(res)

69. end

70. end

71. end

Handler (resident script with 0 delay) configuration

1. mb:open()
Open Modbus TCP connection

2. mb:setslave(10)
set slave device id

3. mb:setmapping(10, 10, 10, 10)
set number coils, discrete inputs, holding registers and input registers

4.mb:setwritecoilcb(function(coil, value)...
callback function which is executed for each coil write

5. mb:setwriteregistercb(function(coil, value)...
callback function which is executed for each register write

Handler script example

1. -- modbus init

2. if not mb then

3. require('luamodbus')

4. mb = luamodbus.tcp()

5. mb:open()

6.

7. -- init slave storage for coils, discrete inputs, holding registers and input registers

8. mb:setmapping(10, 10, 10, 10)

9.

10. -- coil write callback

11. mb:setwritecoilcb(function(coil, value)

12. if coil == 0 then

13. grp.write('1/1/1', value, dt.bool)

14. else

15. alert('coil: %d = %s', coil, tostring(value))

175

16. end

17. end)

18.

19. -- register write callback

20. mb:setwriteregistercb(function(register, value)

21. if register == 0 then

22. -- send value limited to 0..100

23. grp.write('4/1/5', math.min(100, value), dt.scale)

24. else

25. alert('register: %d = %d', register, value)

26. end

27. end

28. end

29.

30. -- server part init

31. if not server then

32. require('rpc')

33.

34. -- incoming data handler

35. local handler = function(request)

36. local fn, res

37.

38. fn =tostring(request.fn)

39.

40. if not mb[fn]then

41. return{nil, 'unknown function ' .. fn }

42. end

43.

44. if type(request.params)=='table' then

45. table.insert(request.params, 1, mb)

46. res ={ mb[fn](unpack(request.params))}

47. else

48. res ={ mb[fn](mb)}

49. end

50.

51. return res

52. end

53.

54. server = rpc.server('127.0.0.1', 28002, 'mbproxy', handler, 0.01)

55. end

56.

57. mb:handleslave()

58. server:step()

Example: event script which changes modbus slave coil (address 0)

Must be mapped to a group address with binary value.

176

1. value = event.getvalue()

2. mb = mbproxy.new()

3. mb:setcoils(0, value)

Example: event script which changes modbus slave register (address 5)

Must be mapped to a group address with scaling (0..100) value

1. value = event.getvalue()

2. mb = mbproxy.new()

3. mb:setregisters(5, value)

LM interconnection with PLC over Modbus TCP

sleep time = 0. It only supports binary objects as coils and 1-byte / 2-byte integer objects as
registers. Number of coils and registers is not limited, object mapping can be set by filling coils,
registers and regdt tables.

1. if not mb then

2. require('genohm-scada.eibdgm')

3. require('luamodbus')

4.

5. -- list of coil mapping, starting from 0

6. coils = { '1/1/1', '1/1/2' }

7.

8. -- list of register mapping, starting from 0

9. registers = { '2/2/2', '3/3/3' }

10.

11. -- list of register data types, element count must match registers table

12. regdt = { dt.int8, dt.uint16 }

13.

14. -- knx group write callback

15. function knxgroupwrite(event)

16. local value

17.

18. -- try to find matching coil

19. for id, addr in ipairs(coils) do

20. if event.dst == addr then

21. value = knxdatatype.decode(event.datahex, dt.bool)

22. mb:setcoils(id - 1, value)

23. end

24. end

25.

26. -- try to find matching register

27. for id, addr in ipairs(registers) do

28. if event.dst == addr then

29. value = knxdatatype.decode(event.datahex, regdt[id])

177

30. mb:setregisters(id - 1, value)

31. end

32. end

33. end

34.

35. -- coil write callback

36. function mbwritecoils(coil, value)

37. local addr = coils[coil + 1]

38. if addr then

39. grp.write(addr, value, dt.bool)

40. end

41. end

42.

43. -- register write callback

44. function mbwriteregisters(register, value)

45. local addr = registers[register + 1]

46. if addr then

47. grp.write(addr, value, regdt[register + 1])

48. end

49. end

50.

51. -- knx group monitor, handles group writes

52. knxclient = eibdgm:new({ timeout = 0.1 })

53. knxclient:sethandler('groupwrite', knxgroupwrite)

54.

55. -- modbus slave, listen on all interfaces and default port 502

56. mb = luamodbus.tcp()

57. mb:open('0.0.0.0', 502)

58.

59. -- setting slave id is optional

60. -- mb:setslave(1)

61.

62. mb:setreceivetimeout(0.1)

63. mb:setmapping(#coils, 0, #registers, 0)

64.

65. -- init coils

66. for id, addr in ipairs(coils) do

67. value = grp.getvalue(addr)

68. mb:setcoils(id - 1, value)

69. end

70.

71. -- init registers

72. for id, addr in ipairs(registers) do

73. value = grp.getvalue(addr)

74. mb:setregisters(id - 1, value)

75. end

76.

77. -- set callbacks for coil and register write

78. mb:setwritecoilcb(mbwritecoils)

79. mb:setwriteregistercb(mbwriteregisters)

178

80. end

81.

82. -- handle modbus and knx

83. mb:handleslave()

84. knxclient:step()

179

13. BACnet IP interconnection with LM

13.1. BACnet server mode: transparent data transfer to BACnet network

BACnet server specific configuration can be done in Sys Config Network BACnet Settings.

 Server enabled – specify if BACnet server is enabled or not
 Device ID – device ID in BACnet network
 Password – device password
 Object priority – object priority
 Port – port number
 BBMD IP – BACnet router IP. When router IP and port are set, LM will act as a

foreign device and will attempt to register with BACnet router.
 BBMD port – BACnet router port. When router IP and port are set, LM will act as a

foreign device and will attempt to register with BACnett router
 BBMD lease time (seconds) – registration resend interval

To make KNX/EIB objects BACnet readable/writable, mark necessary objects in LogicMachine as
“Export object”. Binary objects will appear as Binary Values, other numeric values will appear as
Analog Values. Other types are not currently supported. KNX bus write changes priority array
value at configured object priority index

180

In System Configuration Network BACnet objects you can see marked objects on
LogicMachine which are sent to BACnet network.

13.2. BACnet client mode

Normally this mode is used to interconnect LogicMachine, for example, with VRV systems over
BACnet IP protocol. The settings are available in BACnet tab.

181

By clicking on Scan Network button you can see a list of BACnet server devices on the network.
With Scan Selected you can rescan specific BACnet server for respective objects.

Mapping to KNX objects currently is done over scripting.

Before using any BACnet function, you must include the library:
 require('bacnet')

Read current value of binary or analog object:
 bacnet.readvalue(device_id, object_type, object_id)

Read binary object:
 value = bacnet.readvalue(127001, 'binary value', 2305)

Read analog object:
 value = bacnet.readvalue(127001, 'analog value', 2306)

Write new value to binary or analog object priority array:
 bacnet.write = function(device_id, object_type, object_id, value, priority)
 Value can be nil, boolean, number or a numeric string
 Priority parameter is optional, lowest priority is used by default

Set binary object value:
 bacnet.write(127001, 'binary value', 2305, true)

Set analog object value:
 bacnet.write(127001, 'analog value', 2306, 22.5)

Set binary object value at priority 12:
 bacnet.write(127001, 'binary value', 2305, true, 12)

Set analog object value at priority 10:
 bacnet.write(127001, 'analog value', 2306, 22.5, 10)

182

Clear binary object value at priority 12:
 bacnet.write(127001, 'binary value', 2305, nil, 12)

183

14. DALI configuration

LogicMachine5 Lite supports DALI via external RS-485/DALI gateway. We recommends to
connect no more than 32 ballasts to one DALI line. If more ballasts are necessary to connect,
you can use more DALI-RS-485 interfaces and connect to RS-485 port.

 Scan gateways - scans for currently connected gateways, address mapping for missing

devices is deleted automatically
 Write ID - allows setting a unique address for each gateway
 Scan devices - scans for currently connected DALI devices to the selected gateway.

There is one of 4 options to choose from.

Full scan, set short addresses - scans for currently connected DALI devices to the

selected gateway, assigns short address automatically starting from 0,1,2,...

Full scan, clear device mapping - scans for currently connected DALI devices to the

selected gateway without assigning short addresses, clear KNX grp address mapping to

devices

Full scan, keep device mapping - scans for currently connected DALI devices to the

selected gateway without assigning short addresses, keeps device mapping to KNX grp

184

addresses

Partial scan, only add new devices - scans for newly added DALI devices to the selected

gateway without assigning short addresses. Missing devices are not removed from the list

 Port settings – serial port name if there are external DALI-RS-485 interfaces connected

For each DALI device, you can set a custom name and map to binary on/off and scale object.
This allows communication with DALI devices from KNX bus and visualization without any
additional scripts.

14.1. DALI object mapping

Once DALI objects are scanned, you can click on corresponding object and perform the
configuration.

 Device name – name of the DALI device
 Binary (ON/OFF) object – map to KNX binary object
 Preset for binary ON – preset on binary ON
 Scale (0-100%) object – map to KNX scale object

You can set up specific value by clicking on this icon

14.2. Access DALI bus from scripts

If you want to access DALI devices from other scripts, you can use dalicmd function.

res, err = dalicmd(gwid, cmd, params)

Parameters

 gwid (number/string) gateway id: gateway number or internal when internal DALI exists

 cmd (string) command to send, refer to command table for possible values

 params (table) command parameters

185

Params (Lua table):

 addrtype (string) address type, only required for addressable commands, possible

values: short group broadcast

 address (number) short or group address

 value (number) additional value to send

3 addressing modes are supported

 broadcast all slaves should react: { addrtype = 'broadcast' }

 short only one slave having a unique short address should react: { addrtype = 'short',

address = SLAVE_ID }

 group several slaves belonging to a group should react: { addrtype = 'group', address =

GROUP_ID }

Command types

If command is addressable, it's possible to provide address type and address in params table.

If command expects a reply it must be addressed so only one slave can reply, otherwise a
collision will happen. In case of success, reply is a binary string, usually consisting of a single
byte. You can convert it to number like this:

-- query status of slave with short address 5 on the internal DALI bus

res, err = dalicmd('internal', 'querystatus', { addrtype = 'short', address = 5 })

-- read ok

if res then

 status = res:byte()

end

If command has a value range, params table must have a value field which is an integer in the

specified range. For example, arc command accepts a value from 0 to 254:

-- set level to 42 for all slave on the internal DALI bus

dalicmd('internal', 'arc', { addrtype = 'broadcast', value = 42 })

Setting DTR

For commands where DTR is needed prior to executing command, use setdtr command to set the

value:

186

-- set dtr for ballast 5 to 200

dalicmd('internal', 'setdtr', { addrtype = 'short', address = 5, value = 200 })

Example (use gateway with id 1, switch all ballasts off, set ballast with short address 5 to full
on)

require('user.dali')

dalicmd(1, 'arc', { addrtype = 'broadcast', value = 0 })

dalicmd(1, 'arc', { addrtype = 'short', address = 5, value = 254 })

Example (set maximum value for ballast 5 to value 200; the ballast is connected on internal
DALi gateway on LogicMachine)

require('user.dali')

dalicmd('internal', 'setdtr', { addrtype = 'short', address = 5, value = 200 })

dalicmd('internal', 'storemax', { addrtype = 'short', address = 5 })

Example (log all ballast short addresses which are connected to internal DALI gateway)

require('user.dali')

res, err = dalicmd('internal', 'queryshortaddr', { addrtype = 'broadcast' })

if res then

 log(res:byte())

else

 log(err)

end

Example (add 4 DALI short addressed to one group with nr. 7)

require('user.dali')

dalicmd('internal', 'addtogroup', { addrtype = 'short', address = 1, value = 7 })

dalicmd('internal', 'addtogroup', { addrtype = 'short', address = 2, value = 7 })

dalicmd('internal', 'addtogroup', { addrtype = 'short', address = 3, value = 7 })

dalicmd('internal', 'addtogroup', { addrtype = 'short', address = 4, value = 7 })

187

Setting group 7 to a certain value:

require('user.dali')

value = event.getvalue()

value = math.floor(value * 2.54)

dalicmd('internal', 'arc', { addrtype = 'group', address = 7, value = value })

Example (functions for calling and saving scenes, can be used not only for DALI)

First, you have to define each scene via a Lua table where each item is a table with two items:
group address and value. Each scene has a unique id which can be a number or a string.

callscene(id) sets all objects in given scene to their specified value. First it looks for a saved
scene in storage and uses default values if storage is empty.

savescene(id) gets current values of all objects from given scene and saves the whole scene in
storage.

scenes = {}

scenes[1] = {

 { '15/1/1', 50 },

 { '15/1/2', 75 },

 { '15/1/3', 90 },

}

function callscene(id)

 local key, scene

 key = 'scene_' .. id

 scene = storage.get(key, scenes[id])

 if type(scene) ~= 'table' then

 alert('Scene ' .. id .. ' not found')

 return

 end

 for _, item in ipairs(scene) do

 grp.write(item[1], item[2])

 end

end

188

function savescene(id)

 local key, scene

 scene = scenes[id]

 if type(scene) ~= 'table' then

 alert('Scene ' .. id .. ' not found')

 return

 end

 for i, item in ipairs(scene) do

 scene[i][2] = grp.getvalue(item[1])

 end

 key = 'scene_' .. id

 storage.set(key, scene)

end

Example (Binary dimmer for DALI lamps to be able dim DALI lamp from physical pushbutton)

1) Add bindimmer function to Common functions

function bindimmer(up, down, out, event)

 local main, rev, step, val, new, delay

 step = 10 -- in %

 delay = 0.5 -- in seconds

 -- ignore "stop" command

 val = tonumber(event.datahex, 16)

 if val == 0 then

 return

 end

 -- up, normal mode

 if event.dst == up then

 main, rev = up, down

 -- down, reverse step

 elseif event.dst == down then

 main, rev = down, up

 step = -step

189

 -- invalid object

 else

 return

 end

 -- current output object value

 val = grp.getvalue(out) or 0

 while true do

 -- main object in "stop" state

 if not grp.getvalue(main) then

 return

 end

 -- reverse object in "start" state

 if grp.getvalue(rev) then

 return

 end

 -- get new value

 new = math.min(100, val + step)

 new = math.max(0, new)

 -- no change, stop

 if new == val then

 return

 end

 -- write new value

 val = new

 grp.write(out, new, dt.scale)

 -- wait for next run

 os.sleep(delay)

 end

end

2) Create 3 objects:
 1/1/1 - binary (dim up)

 1/1/2 - binary (dim down)

190

1/1/3 - 1-byte scale (output)

3) Create an event script for each binary object:

bindimmer('1/1/1', '1/1/2', '1/1/3', event)

4) You can tune step and delay variables in bindimmer function to adjust dimming
speed.

DALI commands

Command Description Addressable Reply Value

arc direct arc power control +

0..254

off turn off +

up turn on +

down down +

stepup step up +

stepdown step down +

recallmin recall max level +

recallmax recall min level +

stepdownoff step down and off +

stepupon on and step up +

gotoscene go to scene

0..15

reset reset +

storeactual store actual level in the dtr +

storemax store the dtr as max level +

storemin store the dtr as min level +

storesystemfailure store the dtr as system failure level +

storepoweron store the dtr as power on level +

storefadetime store the dtr as fade time +

storefaderate store the dtr as fade rate +

storescene store the dtr as scene +

0..15

removescene remove from scene +

0..15

addtogroup add to group +

0..15

removefromgroup remove from group +

0..15

storeshortaddress store dtr as short address +

querystatus query status + +

queryballast query ballast + +

querylampfailure query lamp failure + +

querylamppoweron query lamp power on + +

querylimiterror query limit error + +

queryresetstate query reset state + +

querymissingshort query missing short address + +

191

queryversion query version number + +

querydtr query content dtr + +

querydevicetype query device type + +

queryphysicalmin query physical minimum level + +

querypowerfailure query power failure + +

queryactual query actual level + +

querymax query max level + +

querymin query min level + +

querypoweron query power on level + +

querysystemfailure query system failure level + +

queryfadetimerate query fade time / fade rate + +

queryscene query scene level (scenes 0-15) + + 0..15

querygroupslow query groups 0-7 + +

querygroupshigh query groups 8-15 + +

queryrandomaddrh query random address (h) + +

queryrandomaddrm query random address (m) + +

queryrandomaddrl query random address (l) + +

terminate terminate

setdtr set data transfer register (dtr)

0..255

initialise initialise

randomise randomise

compare compare

+

withdraw withdraw

searchaddrh set search address (h)

0..255

searchaddrm set search address (m)

0..255

searchaddrl set search address (l)

0..255

programshortaddr program short address

0..63

verifyshortaddr verify short address

+ 0..63

queryshortaddr query short address

+

physicalselection physical selection

enabledevicetype enable device type x

0..255

192

15. DMX interconnection with LM

DMX protocol support is realized upon RS485 serial port.

DMX function

Add the following user library in Scripting User libraries.

1. local luadmx = require('luadmx')

2. module('DMX', package.seeall)

3.

4. local DMX = {}

5.

6. -- default params

7. local defaults = {

8. -- storage key

9. skey = 'dmx_line_1',

10. -- RS-485 port

11. port = '/dev/RS485',

12. -- number of calls per second

13. resolution = 20,

14. -- total number of channels to use

15. channels = 3,

16. -- transition time in seconds, does not include DMX transfer time

17. transition = 2,

18. }

19.

20. -- value setter

21. function set(chan, val, key)

22. key = key or defaults.skey

23. chan = tonumber(chan) or 0

24. val = tonumber(val) or -1

25.

26. -- validate channel number and value

27. if chan >= 1 and chan <= 512 and val >= 0 and val <= 255 then

28. storage.exec('lset', key, chan - 1, val)

29. end

30. end

31.

32. -- value getter

33. function get(chan, key)

34. local res, val

35. key = key or defaults.skey

36. chan = tonumber(chan) or 0

37.

38. -- validate channel number and value

39. if chan >= 1 and chan <= 512 then

40. res = storage.exec('lrange', key, chan - 1, chan - 1)

41. if type(res) == 'table' then

193

42. val = tonumber(res[1])

43. end

44. end

45.

46. return val

47. end

48.

49. -- DMX init, returns new DMX object

50. function init(params)

51. local n, k, v, _

52.

53. -- create metatable and set user parameters

54. n = setmetatable({}, { __index = DMX })

55. n.params = params or {}

56.

57. _, n.conn = pcall(require('redis').connect)

58.

59. -- merge parameters that are set by user

60. for k, v in pairs(defaults) do

61. if n.params[k] == nil then

62. n.params[k] = v

63. end

64. end

65.

66. n:reset()

67.

68. return n

69. end

70.

71. function DMX:reset()

72. local err, chan, params

73.

74. params = self.params

75. self.dm, err = luadmx.open(params.port)

76.

77. -- error while opening

78. if err then

79. os.sleep(1)

80. error(err)

81. end

82.

83. -- set channel count

84. self.dm:setcount(params.channels)

85.

86. -- number of transaction ticks

87. self.ticks = math.max(1, params.transition * params.resolution)

88.

89. -- calculate sleep time

90. self.sleep = 1 / params.resolution

91.

194

92. -- reset channel map

93. self.channels = {}

94.

95. -- empty channel value map

96. self.conn:ltrim(params.skey, 1, 0)

97.

98. -- fill channel map

99. for chan = 1, params.channels do

100. self.channels[chan] = { current = 0, target = 0, ticks = 0 }

101.

102. -- turn off by default

103. self.conn:lpush(params.skey, 0)

104. self.dm:setchannel(chan, 0)

105. end

106. end

107.

108. -- get new values

109. function DMX:getvalues()

110. local max, channels, ticks, values, val

111.

112. max = self.params.channels

113. channels = self.channels

114. ticks = self.ticks

115. values = self.conn:lrange(self.params.skey, 0, max - 1) or {}

116.

117. -- check for new values for each channel

118. for chan = 1, max do

119. val = tonumber(values[chan]) or 0

120.

121. -- target value differs, set transcation

122. if val ~= channels[chan].target then

123. channels[chan].target = val

124. channels[chan].delta = (channels[chan].target - channels[

chan].current) / ticks

125. channels[chan].ticks = ticks

126. end

127. end

128. end

129.

130. -- main loop handler

131. function DMX:run()

132. self:getvalues()

133.

134. -- transition loop

135. for i = 1, self.params.resolution do

136. self:step()

137. self.dm:send()

138. os.sleep(self.sleep)

139. end

140. end

195

141.

142. -- single transition step

143. function DMX:step()

144. local chan, channels, t

145.

146. channels = self.channels

147.

148. -- transition for each channel

149. for chan = 1, self.params.channels do

150. t = channels[chan].ticks

151.

152. -- transition is active

153. if t > 0 then

154. t = t - 1

155.

156. channels[chan].current = channels[chan].target - channels[

chan].delta * t

157. channels[chan].ticks = t

158.

159. self.dm:setchannel(chan, channels[chan].current)

160. end

161. end

162. end

DMX handler script

Add the following resident script with sleep interval = 0, adjust port and channel as needed

1. if not dmxhandler then

2. require('user.dmx')

3. dmxhandler = DMX.init({

4. port = '/dev/RS485', -- RS-485 port name

5. channels = 8, -- number of DMX channels to use

6. transition = 2, -- soft transition time in seconds

7. })

8. end

9.

10. dmxhandler:run()

Setter (used in other scripts)

DMX.set(channel, value)

Mark DMX objects

Create objects with DMX tag, where last part of group address is DMX address (starting from 1).
Create event script mapped to DMX tag.

196

1. require('user.dmx')

2. -- get ID as group address last part (x/y/ID)

3. id = tonumber(event.dst:split('/')[3])

4. -- get event value (1 byte scaling)

5. value = event.getvalue()

6. -- convert from [0..100] to [0..255]

7. value = math.floor(value * 2.55)

8. -- set channel ID value

9. DMX.set(id, value)

Predefined scene example

The following example should be placed inside a resident script. Sleep time defines scene keep
time (at least 1 second).

1. if not scenes then

2. -- 3 channel scene

3. scenes = {

4. { 255, 0, 0 },

5. { 0, 255, 0 },

6. { 0, 0, 255 },

7. { 255, 255, 0 },

8. { 0, 255, 255 },

9. { 255, 0, 255 },

10. { 255, 255, 255 },

11. }

12.

13. current = 1

14. end

15.

16. -- set current scene values

17. scene = scenes[current]

18. for i, v in ipairs(scene) do

19. DMX.set(i, v)

20. end

21.

22. -- switch to next scene

23. current = current + 1

24. if current > #scenes then

25. current = 1

26. end

Random scene example

The following example should be placed inside a resident script. Sleep time defines scene keep
time (at least 1 second).

1. -- number of steps to use, e.g. 3 steps = { 0, 127, 255 }

2. steps = 5

3. -- number of channels to set

197

4. channels = 3

5. -- first channel number

6. offset = 1

7.

8. for i = offset, channels do

9. v = math.random(0, (steps - 1)) * 255 / (steps - 1)

10. DMX.set(i, math.floor(v))

11. end

198

16. 3G modem connection with LM

LogicMachine has a regular 3G modem driver built-in (Huawei and other vendor supported).
Currently this can be used for SMS notifications only – receiving and sending commands. The
modem has to be plugged into USB port. We suggest to use external 5V powering for the
modem because by USB2.0 standard the output current on USB is 0.75A, but some modems
requires up to 2A which is out of standard so the modem can lack the power and get
disconnected.

List of supported 3G modems can be found here:
http://openrb.com/wp-content/uploads/2015/12/3G_USB_device_reference.txt

First thing is to lower the modem speed by adding the following code in Start-up / Init script:

1. os.execute('echo 1 > /sys/bus/platform/devices/ci_hdrc.0/force_full_speed')

2. os.execute('echo 1 > /sys/bus/platform/devices/ci_hdrc.1/force_full_speed')

3. os.execute('usbreset /dev/bus/usb/001/001')

After you need to add SMS handler program – a resident script with sleep interval 0.

Note! Change white list telephone numbers and SIM card’s PIN code in the below script.

1. -- init

2. ifnot modem then

3. -- allowed numbers, SMS message from other number will be ignored

4. numbers ={'1234567890', '0123456789'}

5. -- replace 0000 with SIM pin number, or remove the line below if PIN check is disabled

6. pincode='0000'

7. -- modem communication port, ttyUSB2 for Huawei E173

8. comport ='ttyUSB2'

9. -- open serial port

10. modem =AT:init('/dev/' .. comport)

11. -- command parser

12. parser =function(cmd, sender)

13. local find, pos, name, mode, offset, value, jvalue, obj

14. cmd=cmd:trim()

15. mode =cmd:sub(1, 1):upper()

16. if mode =='W'or mode =='R'then

17. cmd=cmd:sub(3):trim()

18. -- parse object name/address

19. find =cmd:sub(1, 1)=='"'and'"'or' '

20. offset = find =='"'and 1 or0

21. -- pad with space when in read mode

22. if mode =='R'and find ==' 'then

23. cmd=cmd .. ' '

24. end

25. -- find name

26. pos=cmd:find(find, 1 + offset, true)

27. -- name end not found, stop

http://openrb.com/wp-content/uploads/2015/12/3G_USB_device_reference.txt

199

28. ifnotposthen

29. returnfalse

30. end

31. -- get name part

32. name =cmd:sub(1 + offset, pos - offset):trim()

33. if mode =='W'then

34. value =cmd:sub(pos + offset):trim()

35. ifnot value then

36. returnfalse

37. end

38. -- try decoding value

39. jvalue=json.pdecode(value)

40. value =jvalue ~=nilandjvalueor value

41. -- send to bus

42. grp.write(name, value)

43. -- read request

44. else

45. obj=grp.find(name)

46. -- send read request and wait for update

47. ifobjthen

48. obj:read()

49. os.sleep(1)

50. -- read new value

51. value =grp.getvalue(name)

52. -- got value, send response

53. if value ~=nilthen

54. jvalue=json.pencode(value)

55. if obj.name then

56. name =string.format('%s (%s)', obj.name, obj.address)

57. end

58. cmd=string.format('Value of %s is %s', name, jvalue)

59. modem:sendsms(sender, cmd)

60. end

61. end

62. end

63. end

64. end

65. -- incoming sms handler

66. handler =function(sms)

67. alert('incoming sms from %s (%s)', sms.sender, sms.data)

68. -- sms from known number, call parser

69. iftable.contains(numbers, sms.sender)then

70. parser(sms.data, sms.sender)

71. end

72. end

73. -- set sms handler

74. modem:setsmshandler(handler)

75. -- send pin if set

76. ifpincodethen

77. modem:send('AT+CPIN=' .. pincode)

200

78. end

79. -- set to pdu mode

80. modem:send('AT+CMGF=0')

81. -- enable sms notifications

82. modem:send('AT+CNMI=1,1,0,0,0')

83. alert('SMS handler started')

84. end

85. modem:run()

Command syntax:
 a. Write to bus:
 W ALIAS VALUE
 b. Read from bus:
 R ALIAS

On read request, script will reply with SMS message containing current value of selected object.

ALIAS can be:
 a. Group address (e.g. 1/1/1)
 b. Name (e.g. Obj1). If name contains spaces then it must be escaped usign double quotes (e.g.
"Room Temperature")

NOTE:
 a. Object data type and name must be set in Objects tab. Otherwise script won't be able to
read and write to object.
 b. Only ASCII symbols are accepted in the message.

16.1. Examples

Binary write (send the following SMS to switch kitchen lights on):

W 1/1/1 true

Scaling write (send the following SMS to set value 67% for red LED):

W LED1Red 67

Temperature (floating point) write (send the following SMS to make setpoint in the living room
to 22.5 degrees):

W “Room Setpoint” 22.5

Read (send the following SMS to read the security panel value:
R 2/1/1

201

16.2. Send SMS messages to specific SIM numbers after group-read or group-
write is triggered

Task: Assume we have an Event-based script which triggers a program once group-read or
group-write is triggered for address 1/1/1. We want to send SMS to numbers 23335555 and
23335556 with 1/1/1 actual status.

1. require('socket')

2.

3. client =socket.udp()

4.

5. -- in the message field the number where SMS has to be send should be specified at the

beginning

6. localmsg='23335555 1/1/1 changes its value to: ' .. tonumber(event.datahex)

7. client:sendto(msg, '127.0.0.1', 12535)

8.

9. msg='23335556 1/1/1 changes its value to: ' .. tonumber(event.datahex)

10. client:sendto(msg, '127.0.0.1', 12535)

16.3. Send SMS messages without 3G modem

How to send event SMS to mobile phone from LogicMachine through Twilio service, without
external 3G adapter?

You can use Twilio service which offers free of charge SMS in the test period and messaging at
$0.01 for regular usage. The only disadvantage is it will use your standard Internet connection
to send messages to Twilio servers (not via GSM as with 3G adapters).

Twilio account

You can get ID and Token needed for the below example by registering on Twilio. Make sure
you enter a verified SIM number list / recipients in your account. Or please contact us for ready
example with our account data.

Function

Add the following function in Scripting –> Common functions

1. function sms(id, token, from, to, body)

2. local escape = require('socket.url').escape

3. local request = require('ssl.https').request

4. local url = string.format('https://%s:%s@api.twilio.com/2010-04-

01/Accounts/%s/Messages.json', id, token, id)

5. local body = string.format('From=%s&To=%s&Body=%s', escape(from),

escape(to), escape(body))

6.

7. return request(url, body)

202

8. end

Event-based script

Add event-based program for specific object, like 1/1/2 in this example

1. value = event.getvalue()

2.

3. from_nr = '+37112345679' -- put sender SIM nr here

4. to_nr = '+37112345678' -- put recepient SIM nr here

5. id_nr = 'ACe56f5' -- put your ID here

6. token_nr = '598c6ff' -- put your token here

7.

8. sms(id_nr, token_nr, from_nr, to_nr, 'The value for 1/1/2 has changed

to'..tostring(value))

203

17. Communication with RS232/RS485 serial ports

The following are the naming of Serial ports for different versions of Logic Machine.

LM4

Reactor,
LM5

Reactor V2

 GND

GND

GND
 RS485 A

RS485-1
RS485 A

RS485-1
RS485 A

RS485
RS485 B

RS485 B

RS485 B

GND

GND

 RS485 A
RS485-2

RS485 A
RS485-2

RS485 B

RS485 B

 GND

 RS485 A

RS485-3

RS485 B

Reactor
V3

 GND
 RS485 A

RS485
RS485 B

Note! LM5 series devices have 1 definitive serial port RS-485 and other one can work either as
RS-485 or RS-232. The one will work which is most recently opened.

If the following command is used, you activate RS-485 second port:

port = serial.open('/dev/RS485-2', { baudrate = 115200, parity = 'even', duplex = 'ha

lf' })

If the following command is used, you activate RS-232 port:

port = serial.open('/dev/RS232', { baudrate = 9600, parity = 'even', duplex = 'full'

})

LM5L, LM5-RIO,
LM5-RIOE

RS485 A

RS485-1 RS485 B

GND

RS485 A

RS485-2 RS485 B

GND

TX

RS232 RX

GND

204

Functions

Include library before calling serial functions:
require('serial')

Opens given port, returns: port handle, or, in case of error, nil plus error message
port, err = serial.open(device, params)

Parameters:

 device port device name, required

 params parameters table, optional, (defaults are in bold):
o baudrate 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200,

230400
o parity "none", "even", "odd"
o databits 5, 6, 7, 8
o stopbits 1, 2
o duplex "full", "half" (Note: "half" is required for RS-485)

Reads the specified number of bytes, execution is blocked until read is complete
res, err = port:read(bytes)

Parameters:

 bytes number of bytes to read

Reads until timeout occurs or the specified number of bytes is received, whichever happens
first.
Returns data plus number of bytes read, or, in case of error, nil plus error message.
res, err = port:read(bytes, timeout)

Parameters:

 bytes number of bytes to read

 timeout maximum time to wait for read to complete, minimum value and timer
resolution is 0.1 seconds

Flushes any read/unsent bytes
port:flush()

Closes serial port, no other port functions may be called afterwards
port:close()

205

Examples

Write to port

port:write('test data')

Blocking read (script will block until 10 characters are read)

data=port:read(10)

Timeout read (script will wait for 10 characters for 20 seconds)

data=port:read(10, 20)

Close serial port

port:close()

Resident script, RS-485 echo test

-- open port on first call
if not port then
require('serial')
port = serial.open('/dev/RS485-1', { baudrate = 9600, parity = 'even', duplex = 'half' })
port:flush()
end

-- port ready
if port then
 -- read one byte
char = port:read(1, 1)
 -- send back if read succeeded
if char then
port:write(char)
end
end

HEX to RS-485 example

require('serial')
port = serial.open('/dev/RS485-1', {
baudrate = 4800,
parity = 'none',
duplex = 'half'
})

cmd = string.char(0xAB, 0xF1, 0xFF, 0xFF, 0xFF, 0xFF, 0xBE, 0xD1, 0x01, 0xFE, 0xFF, 0xFF,
0x0A, 0x24)
cmd = 'ABF1FFFFFFFFBED101FEFFFF0A24'

port:write(cmd)

Check which cmd works for you, as it can be either hex-encoded readable data or hex
representation of binary data. You might also need to change the parity config
http://openrb.com/docs/serial.htm

http://openrb.com/docs/serial.htm

206

18. Bluetooth 4.0 integration

Bluetooth can be integrated over USB-Bluetooth adapter.
Some of supported Bluetooth 4.0 USB adapters:

 Broadcom BCM20702A0

 Trust 18187

 Belkin F8T065bf

 Plugable USB Bluetooth 4.0

 Laird BT820

Configuration of Bluetooth is located in LogicMachine BLE tab.

A support for any BLE device can be added if a communication protocol will be provided and
will not change in the future software release of BLE device.

Profiles

List of supported BLE devices can be found by clicking Profiles button. To add a new profile, you
have to upload *.lua profile file by clicking on Add profile button.

207

Mapping functionality to KNX group addresses

Once BLE device is seen by LogicMachine Ambient, it will automatically appear in the list.

By clicking on specific device, you can map its functionality to KNX group addresses.
For AWOX AromLight Color BLE lamp, you can map LED color object to KNX.

There are following mapping objects for Xiaomi Mi Band wearable – device present object,
steps counter, battery level, vibrate the band.

208

Example

Alpha MIO BLE watch has heart-rate as one of objects. This event-based script will switch on
ventilation if the heart-rate is >80 and switch off if its lower

19. value = event.getvalue()

20. if value > 80 then

21. grp.write('2/2/2', true)

22. else

23. grp.write('2/2/2', false)

24. end

209

21. SIP server on LogicMachine

Task: How to pair SIP door entry systems with building automation project? In LogicMachine
we have built SIP registrar which can send SIP requests to final SIP clients. For example, one can
install Linphone SIP client app on touch devices which are used for visualization control. Upon
SIP request from door entry system, LogicMachine will forward the request to the respective
SIP client / recipient. On this client’s device a new window will appear with options to answer
or reject the call. When the call is answered, you will see video and audio from the door entry
system. When the call is finished, Linphone app will go to the background.

SIP package installation on LM:

Add the following Resident script, 60 sec sleep time, run once:

os.execute('opkg --force-depends install http://dl.openrb.com/pkg/kamailio/terminfo_5.7-
5_mxs.ipk')
os.execute('opkg --force-depends install http://dl.openrb.com/pkg/kamailio/libncurses_5.7-
5_mxs.ipk')
os.execute('opkg --force-depends install http://dl.openrb.com/pkg/kamailio/libreadline_5.2-
2_mxs.ipk')
os.execute('opkg --force-depends install http://dl.openrb.com/pkg/kamailio/kamailio3_3.3.7-
1_mxs.ipk')
os.execute('opkg --force-depends install http://dl.openrb.com/pkg/kamailio/kamailio3-mod-
maxfwd_3.3.7-1_mxs.ipk')
os.execute('opkg --force-depends install http://dl.openrb.com/pkg/kamailio/kamailio3-mod-
registrar_3.3.7-1_mxs.ipk')
os.execute('opkg --force-depends install http://dl.openrb.com/pkg/kamailio/kamailio3-mod-
rr_3.3.7-1_mxs.ipk')
os.execute('opkg --force-depends install http://dl.openrb.com/pkg/kamailio/kamailio3-mod-
sl_3.3.7-1_mxs.ipk')
os.execute('opkg --force-depends install http://dl.openrb.com/pkg/kamailio/kamailio3-mod-
tm_3.3.7-1_mxs.ipk')
os.execute('opkg --force-depends install http://dl.openrb.com/pkg/kamailio/kamailio3-mod-
usrloc_3.3.7-1_mxs.ipk')

os.execute('/etc/init.d/kamailio enable')
os.execute('/etc/init.d/kamailio start')

Check if LM has Internet access

Check that IP, gateway, subnet, DNS are set correctly set.

210

SIP client application

You can use for example Linphone as your SIP client. You have to enter IP of LogicMachine in its
settings.

211

22. Object value export via XML

Make KNX objects XML readable

In the Objects tab click on the objects which you want to receive the current value by XML
request. Check the Export object

XML request from external PC

The XML request looks like this:

http://remote:remote@192.168.1.211/cgi-bin/scada-remote/request.cgi?m=xml&r=objects

Parameters:

 address – object address (e.g. “1/1/1″)

 name – object name (e.g. “My object”)

 data – decoded object value (e.g 42 or “01.01.2012″)

 datatype – object datatype (e.g. 1 or 5.001) – standard KNX data types

 time – object update time (UNIX timestamp)

 date – object update time (RFC date)

 comment – object comment (e.g. “Second floor entry lights”)

 tags – optional array of object tags (e.g. “Light”, “Second floor”)

Note! To get list of objects that have been updated after specific time you can pass an optional
“updatetime” parameter (UNIX timestamp format)

212

Login, Password for remote XML request

Login and password can be changed in Network Configuration System GUI Login
Admin/Remote tab.

213

23. Alerts, Errors values

In similar way also Alerts and Errors can be read by XML requests.

Alerts XML request:
http://remote:remote@192.168.0.10/cgi-bin/scada-remote/request.cgi?m=xml&r=alerts

Errors XML request:
http://remote:remote@192.168.0.10/cgi-bin/scada-remote/request.cgi?m=xml&r=errors

http://remote:remote@192.168.0.10/cgi-bin/scada-remote/request.cgi?m=xml&r=errors

214

24. Read Alerts RSS feeds from LogicMachine

It is possible to read Alerts and Errors messages by remote RSS readers.

Add new RSS feed in the RSS reader

 Use the following URL:

 http://remote:remote@192.168.1.211/cgi-bin/scada-remote/request.cgi?m=rss&r=alerts

 50 latest alerts will be shown

 alert time will be shown in UNIX timestamp, alert date will be shown as RFC date

Error tab content by RSS

RSS can be used to read Error tab content as well. In this case the URL would look like:

http://remote:remote@192.168.1.211/cgi-bin/scada-remote/request.cgi?m=rss&r=errors

215

Login, Password for remote RSS requests

Login and password can be changed in System Configuration System User
accessAdmin/Remote tab.

25. Other examples

Different examples, 3rd party protocol integration and other useful applications can be found
here:
http://openrb.com/all-examples/
http://forum.logicmachine.net/

http://openrb.com/all-examples/
http://forum.logicmachine.net/

